
1 
 

Advanced C++11 and C++14 (code CPPA-11) 

 

Course Contents 

A Foundations 
Quick Review of C++98 
 Function pointers 

 Function overloading and virtual functions 

 The categories of polymorphic behaviour 

 Using (and misusing) inheritance to realise subtype 
polymorphism 

 
Fundamentals of Functional Programming (FP) 
 Short history of FP 

 Higher-order functions 

 Recursion; passing a function to itself 

 Strict and non-strict (delayed) evaluation 

 Pure functions and lambda functions 

 
Functions and Data 
 Function composition 

 Closures 

 Currying and uncurrying 

 Partial function application 

 Fold and continuations 

 Functional Programming in C++ 

 
Overview C++ as a multi-paradigm programming 
language 
 Universal function type (polymorphic) wrappers 

(std::function) 

 Binders and predefined function objects (std::bind) 

 Lambda functions versus binders 

 A uniform function framework 

 
Lambda Functions 
 What is a lambda function? 

 The closure of a lambda function 

 Using lambda functions with auto 

 The mutable keyword 

 
Using Lambda Functions 
 Configuring applications 

 With algorithms 

 As sorting criteria 

 As hash function 

 Lambda functions versus function objects 

 A Taxonomy of Functions in C++ 

 
Function Pointers and free Functions 
 Object and static member functions 

 Function objects 

 Lambda functions 

 Events and signals (Boost signals2 library) 

 
B Core Topics 
IEEE 754 
 Overview of IEEE 754 

 Numerics and IEEE 754 

 Rounding rules and exception handling 

 Normal, subnormal and infinite numbers; NaN 

 Machine precision 

 Rounding and cancellation errors 

 
Numerics in C++ 
 std::numeric_limits<> 

 Directed roundings 

 Floating-point decomposition functions 

 Error analysis 

 Comparing floating-point numbers 

 
More on Lambda Functions 
 What is a lambda function A-Z? 

 Stored lambda functions 

 Using lambda functions to create higher-order 
functions 

 Lambda versus std::bind 

 
Advanced Lambda Functions 
 Generic lambda functions 

 Generic lambda functions versus templates 

 Capture modes 

 Using lambda with decltype and std::forward 

 
Applications 
 Creating an algebra of higher-order functions 

 Using lambda functions to configure applications 

 Generalised lambda capture 

 Lambda functions and software design patterns 

 Advanced Features 

 



2 
 

Introduction to Type Traits 
 Introduction to metaprogramming 

 Defining behaviour based on type 

 Type categories 

 Using type traits in applications and libraries 

 
Type Categories 
 Primary (is a generic type of a given type?) 

 Composite (is a type scalar, compound or object?) 

 Properties (e.g. is a class abstract) 

 Relationships (comparing types In some way) 

 
Some Applications of Type Traits 
 Robust numerics libraries 

 Compile-time Bridge design pattern 

 Type-independent code 

 
C Data Structures, Libraries and STL 
Review of STL Containers 
 Sequence containers 

 Associative containers 

 Unordered containers 

 Container adapters 

 User-defined containers 

 Hashing 

 
Hash function and hash table 
 Categories of hash function 

 Creating custom hash 

 Applications 

 Boost and STL Heap 

 
Heap ADT 
 Variants (Fibonacci, skew, priority queue, etc.) 

 Heap and computational efficiency 

 Boost Heap versus STL heap 

 Unordered Containers 

 
Differences with (ordered) associative containers 
 Abilities of unordered containers 

 Complexity analysis 

 Integration with STL and other Boost libraries 

 The Bucket interface 

 Tuples 

 
Modelling n-tuples (pair is a 2-tuple) 
 Using tuples as function arguments and return types 

 Accessing the elements of a tuple 

 Advantages and applications of tuples 

 Tuple member functions 

 
Fixed-sized Arrays std:array<> 
 Why do we need std:array<> ? 

 Operations and abilities 

 Using arrays as C-Style arrays 

 Combining arrays and tuples 

 
D Parallel Programming 
The new C++ Memory Model 
 Sequential consistency 

 Ordering non-atomic operations 

 Relaxed consistency models 

 Total order 

 
Introduction to C++ Threads 
 What is a thread? 

 Creating a thread with various callable objects 

 Thread function: pros and cons 

 Waiting on a thread; detaching a thread 

 Using lambda functions 

 
Atomics 
 Atomic types and atomic operations 

 Atomic load, store, increment, decrement 

 Atomic flags 

 Smart pointers and thread-safe pointer interface 

 
How Threads Cooperate, I 
 Thread synchronisation 

 Locks and mutex 

 Exception-safe lock 

 Sleep and yield 

 
How Threads Cooperate, II 
 Thread notification 

 Condition variables 

 Wait and notify 

 Example: Producer-Consumer pattern 

 
C++ Concurrency: Tasks 
 Motivation 

 Data Dependency graph 

 Tasks versus Threads 

 Concurrency versus Parallelism 

 
C++ Tasking in Detail 
 Futures and shared futures 

 Promises 

 Packaged tasks 

 Waiting on tasks to complete 

 
Your Trainer 
Daniel J. Duffy started the company Datasim in 1987 
to promote C++ as a new object-oriented language 
for developing applications in the roles of developer, 
architect and requirements analyst to help clients 
design and analyse software systems for Computer 
Aided Design (CAD), process control and hardware-
software systems, logistics, holography (optical 



3 
 

technology) and computational finance. He used a 
combination of top-down functional decomposition 
and bottom-up object-oriented programming 
techniques to create stable and extendible 
applications (for a discussion, see Duffy 2004 where 
we have grouped applications into domain 
categories). Previous to Datasim he worked on 
engineering applications in oil and gas and 
semiconductor industries using a range of numerical 
methods (for example, the finite element method 
(FEM)) on mainframe and mini-computers. 

Daniel Duffy has BA (Mod), MSc and PhD degrees in 
pure and applied mathematics and has been active 
in promoting partial differential equation (PDE) and 
finite difference methods (FDM) for applications in 
computational finance. He was responsible for the 
introduction of the Fractional Step (Soviet Splitting) 
method and the Alternating Direction Explicit (ADE) 
method in computational finance. He is also the 
originator of the exponential fitting method for time-
dependent partial differential equations. 

He is also the originator of two very popular C++ 
online courses (both C++98 and C++11/14) on 
www.quantnet.com in cooperation with Quantnet 
LLC and Baruch College (CUNY), NYC. He also trains 
developers and designers around the world. He can 
be contacted dduffy@datasim.nl for queries, 
information and course venues, in-company course 
and course dates 

mailto:dduffy@datasim.nl

