
1

Advanced Design and System Patterns (code ADP)

A quick Review of the GOF Patterns
• Pattern categories

• Most important patterns in real-life applications

• Precise documentation of patterns using UML 2.0

• Extensions and adaptations of GOF patterns

• What are the most important patterns?

Pattern Languages using GOF patterns
• Combining inheritance and composition

• Discovering and inventing new pattern
combinations

• Combining Creational, Structural and Behavioural
patterns

• Reusing pattern languages

Generic Patterns: Fundamentals
• What is genericity, exactly?

• Generic programming versus object-oriented
programming

• Subtype and parametric polymorphism

• Creating generic versions of GOF patterns

Generic Patterns: Design and Applications
• Services and interfaces (provides and requires)

• Traits and traits classes

• Policies and their relationship with contracts

• Policy-based design

• Enriched policies

The POSA Patterns: Overview
• What is POSA?

• Architectural patterns in POSA

• Design patterns in POSA

• Relationship with GOF patterns

Structural Decomposition
• Whole-Part pattern

• Examples from application areas

• Comparing Whole-Part with Composite

• Combinations

Management
• Command

• Command Processor

• Generic Command

• Combining Command and Visitor

• View Handler pattern

Communication
• Mediator and its role in large systems

• The 6 Proxy types

• The Propagator pattern

• Forward-Receiver pattern

• Client-Dispatcher-Server pattern

• Why Observer is not always the best solution

Organisation of Work
• The Builder pattern

• Applying Builder to create arbitrary object
networks

• Master-Slave pattern

• Master-Slave: threads and parallel versions

• Facet (Role) pattern

Interactive Systems
• Model-View-Controller (MVC)

• Presentation-Abstraction-Control (PAC)

• PAC versus MVC; which one (or both)?

• Creating large applications with PAC

Parallel Decomposition Techniques
• Task and data decomposition

• Grouping and ordering tasks

• Data sharing among tasks

Algorithm Structure
• Task and data parallelism

• Divide and conquer

• Geometric decomposition

• Other decomposition techniques

Multithreading
• An introduction to multithreading

• Threads and thread lifecycle

• Mutexes, lock and condition variables

Designing Threaded Applications
• Thread models

• Boss-Worker

• Crew model

• Assembly line

High-level Structures
• Pipes and Filters

• Broker

• Blackboard

• The steps in designing a Blackboard application

2

An Introduction to Domain Architectures
• What is a domain architecture?

• The five DA categories

• Using domain architectures to structure POS and
GOF patterns

• Embedding POSA and GOF patterns in a DA setting

• Examples and test cases

Your Trainer
Daniel J. Duffy started the company Datasim in
1987 to promote C++ as a new object-oriented
language for developing applications in the roles of
developer, architect and requirements analyst to
help clients design and analyse software systems
for Computer Aided Design (CAD), process control
and hardware-software systems, logistics,
holography (optical technology) and computational
finance. He used a combination of top-down
functional decomposition and bottom-up object-
oriented programming techniques to create stable
and extendible applications (for a discussion, see
Duffy 2004 where we have grouped applications
into domain categories). Previous to Datasim he
worked on engineering applications in oil and gas
and semiconductor industries using a range of
numerical methods (for example, the finite element
method (FEM)) on mainframe and mini-computers.
Daniel Duffy has BA (Mod), MSc and PhD degrees in
pure and applied mathematics and has been active
in promoting partial differential equation (PDE) and
finite difference methods (FDM) for applications in
computational finance. He was responsible for the
introduction of the Fractional Step (Soviet Splitting)
method and the Alternating Direction Explicit (ADE)
method in computational finance. He is also the
originator of the exponential fitting method for
time-dependent partial differential equations.
He is also the originator of two very popular C++
online courses (both C++98 and C++11/14) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He can
be contacted dduffy@datasim.nl for queries,
information and course venues, in-company course
and course dates

mailto:dduffy@datasim.nl

