
1

Course contents Applied Numerical Methods with Python
and Python Libraries

Module 1 Preamble, Learning to break fall and
Foundations
The goal of this module is to introduce a number
of fundamental programming features and syntax
and how they are supported in Python.

Variables and Functions

• Lexical Structure

• Python Strings

• Fundamental Data Types

• Functions

• Code layout rules

Program Structure

• Scope and Lifetime of Variables

• Control Flow Structure

• Looping and Iteration

• Iterables, Iterators and Tuples

Fundamental data types

• Numbers and Numeric Operations

• Testing for valid numbers

• Analysis of floating-point numbers

Control flow statements

• If and if-else statements

• While statement

• For statement

• Iterators

Expressions and Operators

• What is an expression?

• Operators and operator precedence

• Numeric operations and conversions

• Sequence operations

Data Types

• Vectors and lists

• Deque, queue and priority queue

• Sets

• Associative arrays and dictionaries

Algorithm Analysis

• Asymptotic behaviour of functions

• Asymptotic order; orders of complexity

• Hierarchy of orders

• Order relationships

• Hard Problems

Types of Algorithms

• Searching and sorting

• Merge

• Insertion, remove

• Linear and binary search

Module 2 Object Oriented Programming in Python
In this module we show how to write correct
object-oriented code in Python by which we mean
code that is maintainable and that bears some
resemblance to real-life applications.

Creating Classes in Python
▪ Naming conventions
▪ My first class A-Z
▪ Constructors and initialisation
▪ Creating objects and class instantiation
▪ Access control issues

Creating Larger Classes
▪ Composition and Delegation
▪ Whole-part objects in Python
▪ Arrays and collections of objects
▪ Inheritance and subclassing
▪ Combining inheritance and composition

Fundamental Arrays and Data Structures
▪ Basic data types
▪ One-dimensional arrays; matrices
▪ n-dimensional arrays (ndarray)

▪ Data type objects (dtype)

• Tuples, dictionaries and lists

Module 3 Functional Programming (FP) in Python
In this module we discuss the extent to which
Python supports programming in a functional style.

Introduction to Higher-order Functions (HOFs)
▪ What can we do with HOFs?
▪ Simplify HOFs by lambda forms and lambda

expressions
▪ Lambdas and the lambda calculus
▪ Apply a function to a collection: map ()

▪ Pass/reject data with filter ()

Advanced Functional Programming
▪ Lazy and eager evaluation
▪ Applications of filter ()

▪ Generator expressions
▪ Recursion and reduction
▪ Folds

2

▪ Decorators
▪ Iterables and itertools module

Exception Handling in Python Programs
▪ Raising exceptions
▪ Handling exceptions
▪ Exception hierarchy and built-in exceptions
▪ User-defined exceptions

Some Standard Library Modules

• sys (state of Python interpreter)

• functools (functions and types supporting
functional programming)

• heapq (keep list “nearly sorted”)

• copy (deep and shallow copies of objects)

Module 4 Essential Mathematical Structures
Approximation of functions by polynomials is
probably one of the most important activities in
numerical analysis and its applications.

Polynomials

• 1d, 2d and 3d polynomials

• The algebra of polynomials

• Power series polynomials

• Operations on polynomials

Special Polynomials and Functionality

• Orthogonal polynomials: Chebychev,
Legendre, Laguerre, Hermite

• 1d, 2d and 3d orthogonal polynomial grids

• Least Squares fitting

• Spline fitting

Random Sampling

• Simple random data

• Permuting and shuffling randomly

• Continuous and discrete distributions

• Drawing random samples

• Creating histograms

Arrays

• N-dimensional arrays ndarray

• Creating and manipulating arrays

• Iterating over arrays

• Applications

Module 5 Fundamental Numerical Methods
This module introduces several important libraries
that are needed in many kinds of applications and
that we use in later modules.

Integration

• General purpose integration schemes in one,
two, three and n dimensions

• Gaussian and Romberg integration

• Trapezoid and Simpson’s rules

• Gaussian quadrature

• roots of orthogonal polynomials

Numerical Solution of Ordinary Differential
Equations (ODE, odeint)

• Real-valued and complex-valued ODEs

• First-order and higher-order ODEs

• Application areas

Statistics

• Random variables

• Probability and cumulative distribution
functions

• T-test, Kolmogorov-Smirnov test

• Test for normality

• Comparing two samples

• Estimation

• Kernel density estimation (KDE)

• Univariate and multivariate estimation

• Applications

An Introduction to Optimisation

• Univariate minimisers and root finders

• Unconstrained and constrained multivariate
optimization

• Least squares minimization and curve fitting

• Orthogonal distance regression (ODR)

Module 6 Advanced Numerical Methods
This module is central to all computationally-
intensive applications because it discusses
numerical linear algebra which consists of routines
to solve matrix equations, eigenvalue and
eigenvector computation as well as matrix
decomposition methods based on LAPACK and
Matlab. We also discuss interpolation algorithms
in one and two dimensions.

Mathematical Functions

• Trigonometric and inverse trigonometric
functions

• Rounding

• Sums, products and differences

• Exponential and logarithmic functions

Linear Algebra: Overview

• ATLAS LAPACK and BLAS libraries

• Basic routines

• Computing norms

• LU and Cholesky decomposition

3

Advanced Linear Algebra

• Eigenvalue and eigenvector computation

• Decomposition: QR, Schur, SVD (Singular
Value Decomposition)

• Matrix functions (for example, the exponential
of a matrix)

• Special matrices

Matrix Library (numpy.matlib)

• Matrix objects

• Creating and initializing matrices

• Using matrices in applications

Interpolation

• Overview of univariate and multivariate
interpolation

• Interpolating a 1-d function

• Piecewise polynomial interpolation

• Piecewise linear interpolation in N dimensions

• Interpolation over a 2-d grid

• 2d splines

Module 7 Numerical Solution of Ordinary and
Partial Differential Equations (ODE/PDE)
This module introduces modern finite difference
(FDM) schemes that approximate the solution of
time-dependent partial differential equations, in
particular, parabolic PDEs.

Automatic Differentiation (AD) Packages

• What is AD?

• Using AD to compute gradient, Jacobian and
Hessian

• Examples: Optimisation and ODE solvers

• Application to sensitivity analysis and Machine
Learning (ML)

Solving ODEs Numerically

• Hand-crafted solutions versus
scipy.integrate.odeint

• Scalar equations and systems of equations

• Stiff and non-stiff problems

• Using scipy.integrate.odeint

Some Important Finite Difference Schemes

• Explicit Euler, fully implicit

• Crank Nicolson

• Alternating Direction Explicit (ADE)

• Methods of Lines (MOL) using
scipy.integrate.odeint

Model PDE: the one-Dimensional Heat Equation

• PDE formulation (initial boundary value
problem)

• Finite difference methods for the heat
equation

• Using Python libraries

• Creating a working program in Python

Implementing Convection-Diffusion-Reaction
(CDR) Equations

• What is CDR?

• Numerical approximation

• Examples and applications

Module 8 Auxiliary Libraries
This module consists of several utility libraries for
serialisation, multi-dimensional data, date time
functions and producing machine code.

Input and Output Essentials

• Load and save MATLAB files

• Birds’-eye overview of HDF5

• Dictionary of numpy arrays

• Working with NetCDF files

• Examples and applications

Python with HDF5

• HDF5 tools

• Reading and writing data

• Working with datasets

• Chunking and compression

Financial Functions

• Future and (net) present values

• Computing payments

• Internal Rate of Return (IRR)

• Interest rate computation

Datetime Support Functions

• Business day functions

• Valid business days

• Rolling

• Number of days between two dates

Advanced Statistical Functions

• Overview of (extensive) functions and their
applications

• Chi-square test

• Kruskal-Wallis

• Kolmogorov-Smirnov

• Calculating regression line

• Geometric and harmonics means

JIT and fast Machine Code

• Introduction to Numba

• Decorating Python code

• When (and when not) to use Numba

4

Module 9 Advanced Data Access
Pandas Executive Overview

• Datastructures for multi-dimensional
heterogeneous data

• Pandas as client of NumPy

• Essential classes Series and DataFrame

• Data mungling / wrangling tasks

• Transforming and mapping data between
formats

Pandas (Data Analysis)

• Data science tools in Python

• Data analysis workflow: DataFrame object

• Working with data operations

• Time series functionality

• Index objects

• Statistical reductions

Python with HDF5 (Hierarchical Data Format)

• Main features in HDF5 for storing large
quantities of numerical data

• Two-way communication between arrays and
disk

• Attributes and metadata

• Datasets

• Groups and directory-like structures

• Chunked storage

Excel Automation

• The Excel Object Model

• App, Workbook, Sheet, Range, Chart

• Working with DataFrames

• Plotting and Reporting

Excel Functionality

• Excel Add-in

• Read and write Excel data

• An Introduction to SQLite

• Excel and Relational Database Systems
(sqlite3)

• Excel and Pandas

Your Trainer
Daniel J. Duffy started the company Datasim in
1987 to promote C++ as a new object-oriented
language for developing applications in the roles of
developer, architect and requirements analyst to
help clients design and analyse software systems
for Computer Aided Design (CAD), process control
and hardware-software systems, logistics,
holography (optical technology) and
computational finance.
He used a combination of top-down functional
decomposition and bottomup object-oriented
programming techniques to create stable and
extendible applications.
Previous to Datasim he worked on engineering
applications in oil and gas and semiconductor
industries using a range of numerical methods (for
example, the finite element method (FEM)) on
mainframe and mini-computers.

Daniel Duffy has BA (Mod), MSc and PhD degrees
in pure, numerical and applied mathematics and
has been active in promoting partial differential
equation (PDE) and finite difference methods
(FDM) for applications in computational finance.
He was responsible for the introduction of the
Fractional Step (Soviet Splitting) method and the
Alternating Direction Explicit (ADE) method in
computational finance. He is also the originator of
the exponential fitting method for time-dependent
partial differential equations.

He is also the originator of two very popular C++
online courses (both C++98 and C++11/20) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He
can be contacted dduffy@datasim.nl for queries,
information and course venues, in-company
course and course dates

mailto:dduffy@datasim.nl

