
JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

CHAPTER 1
A Tour of C++ and Environs

riverrun, past Eve and Adam’s, from swerve of shore to bend of bay, brings us by a
commodius vicus of recirculation back to Howth Castle and Environs

—(Joyce 1939).

1.1 INTRODUCTION AND OBJECTIVES

This book is the second edition of Financial Instrument Pricing using C++ (2004), also writ-
ten by the author. The most important reason for writing this hands-on book is to reflect the
many changes and improvements to the C++ language, in particular due to the announcement
of the new standard C++11 (and to a lesser extent C++14 and C++17). It feels like a new
language compared to C++03 and in a sense it is. First, C++11 improves and extends the syn-
tax of C++03. Second, it has become a programming language that supports the functional
programming model in addition to the object-oriented and generic programming models.

We apply modern C++ to design and implement applications in computational finance,
in particular option pricing problems using PDE/FDM, Monte Carlo and lattices models. We
show the benefits of using C++11 compared to similar solutions in C++03. The resulting code
tends to be more maintainable and extendible especially if the software system has been prop-
erly designed. We recommend spending some time on designing the software system before
jumping into code and to this end we include a defined process to take a problem description,
design the problem and then implement it in such a way that it results in a product that satisfies
the requirements and that is delivered on time and within budget.

This book is a detailed exposition of the language features in C++ , how to use these fea-
tures and how to design applications in computational finance. We discuss modern numerical
methods to price plain and American options and the book is written in a hands-on, step-by-
step fashion.

1.2 WHAT IS C++ ?

C++ is a general-purpose systems programming language that was originally designed as an
extension to the C programming language. Its original name was “C with classes” and its
object-oriented roots can be traced to the programming language Simula which was one of the

1



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

2 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

first object-oriented languages. C++ was standardised by the International Organization for
Standardization (ISO) in 1998 (called the C++03 standard) and C++14 is the standard at the
moment of writing. It can be seen as a minor extension to C++11, which is a major update to
the language.

C++ was designed primarily for applications in which performance, efficiency and flexi-
bility play a vital role. In this sense it is a systems programming language and early applications
in the 1990’s were in telecommunications, embedded systems, medical devices and Computer
Aided Design (CAD) as well as first-generation option pricing risk management systems in
computational finance. The rise in popularity continued well into the late 1990s as major ven-
dors such as Microsoft, Sun and IBM began to endorse object-oriented technology in general
and C++ in particular. It was also in this period that the Java programming language appeared
which in time became a competitor to C++ .

C++ remains one of the most important programming languages at the moment of writing.
It is evolving to support new hardware such as multicore processors, GPUs (graphics process-
ing units) and heterogeneous computing environments. It also has a number of mathematical
libraries that are useful in computational finance applications.

1.3 C++ AS A MULTIPARADIGM PROGRAMMING LANGUAGE

We give an overview of the programming paradigms that C++ supports. In general, a pro-
gramming paradigm is a way to classify programming languages according to the style of
computer programming. Features of various programming languages determine which pro-
gramming paradigms they belong to. C++ is a multiparadigm programming language because
it supports the following styles:

� Procedural: organises code around functions as typically seen in programs written in C,
FORTRAN and COBOL. The style is based on structured programming in which a func-
tion or program is decomposed into simpler functions.

� Object-oriented: organises code around classes. A class is an abstract entity that encap-
sulates functions and data into a logical unit. We instantiate a class to produce objects.
Furthermore, classes can be grouped into hierarchies. It is probably safe to say that this
style is the most popular one in the C++ community.

� Generic/template: templates are a feature of C++ that allow functions and classes to oper-
ate with generic types. A function or class can then work on different data types.

� Functional: treats computation as the evaluation of mathematical functions. It is a declar-
ative programming paradigm; this means that programming is done with expressions and
declarations instead of statements. The output value of a function depends only on its
input arguments.

The generic programing style is becoming more important and pronounced in C++ , pos-
sibly at the expense of the traditional object-oriented model which is based on class hierarchies
and subtype (dynamic) polymorphism. Template code tends to perform better at run-time while
many errors are caught at compile-time in contrast to object-oriented code where the errors
tend to be caught by the linker or even at run-time.

The most recent style that C++ has (some) support for is functional programming. This
style predates both structured and object-oriented programming. Functional programming has



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 3

its origins in lambda calculus, a formal system developed by Alonzo Church in the 1930s
to investigate computability, function definition, function application, and recursion. Many
functional programming languages can be viewed as elaborations on the lambda calculus.
C++ supports the notion of lambda functions. A lambda function in C++ is an unnamed func-
tion but it has all the characteristics of a normal function. Here is an example of defining a
stored lambda function (which we can define in-place in code) and we then call it as a normal
function:

// TestLambda101.cpp
//
// Simple example of a lambda function
//
// (C) Datasim Education BV 2018
//
//

#include <iostream>
#include <string>

int main()
{

// Captured variable
std::string cVar("Hello");

// Stored lambda function, with captured variable
auto hello = [&cVar](const std::string& s)
{ // Return type automatially deduced

std::cout << cVar << " " << s << '\n';
};

// Call the stored lambda function
hello(std::string("C"));
hello(std::string("C++"));

return 0;
}

In this case we see that the lambda function has a formal input string argument and it uses
a captured variable cVar. Lambda functions are simple but powerful and we shall show how
they can be used in computational finance.

C++11 is a major improvement on C++03 and it has a number of features that facilitate
the design of software systems based on a combination of Structured Analysis and object-
oriented technology. In general, we have a defined process to decompose a system into loosely
coupled subsystems (Duffy 2004). We then implement each subsystem in C++11. We discuss
this process in detail in this book.



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

4 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

1.4 THE STRUCTURE AND CONTENTS OF THIS BOOK:
OVERVIEW

This book examines C++ from a number of perspectives. In this sense it differs from other
C++ literature because it discusses the full software lifecycle, starting with the problem
description and eventually producing a working C++ program. In this book the topics are based
on numerical analysis and its applications to computational finance (in particular, option pric-
ing). In order to design and implement maintainable and efficient software systems we discuss
each of the following building blocks in detail:

� A1: The new and improved syntax and language features in C++ .
� A2: Integrating object-oriented, generic and functional programming styles in C++ code.
� A3: Replacing and upgrading the traditional Gang-of-Four software design patterns to fit

into a multiparadigm design methodology.
� A4: Analysing and designing large and complex software systems using a combination

of top-down system decomposition and bottom-up object assembly.
� A5: When writing applications, determine how much of the features in A1, A2, A3 and

A4 to use.

The chapters can be categorised into those that deal with modern C++ syntax and language
features, those that focus on system design and finally those chapters that discuss applications.
In general, the first ten chapters introduce new language features. Chapters 11 to 19 focus on
using C++ to create numerical libraries, visualisation software in Excel and lattice option pric-
ing code. Chapters twenty to twenty-nine are devoted to the finite difference method (FDM)
on the one hand and to multithreading and parallel processing on the other hand. The last three
chapters of the book deal with Monte Carlo methods. For easy reference, we give a one-line
summary of each chapter in the book:

2: Smart pointers, move semantics, r-value references.

3: All kinds of function types; lambda functions, std::bind, functional programming
fundamentals.

4: Advanced templates, variadic templates, decltype, template metaprogramming.

5: Tuples A-Z and their applications.

6: Type traits and compile-time introspection of template types.

7: Fundamental C++ syntax improvements.

8: IEEE 754 standard: operations on floating-point types.

9: A defined process to decompose systems into software components.

10: Useful data types: static and dynamic bitsets, fractions, date and time, fixed-sized
arrays, matrices, matrix solvers.

11: Fundamental software design and data structures for lattice models.

12: Option pricing with lattice models. Both plain and early exercise cases are considered.

13: Essential numerical linear algebra and cubic spline interpolation.

14: A C++ package to visualise data in Excel (for example, a matrix or array of option
prices from a finite difference solver). This package also allows us to use Excel for
simple data storage.



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 5

15: Univariate statistical distributions in C++ and Boost. We also discuss some
applications.

16: The different ways to compute the Bivariate Cumulative Normal (BVN) distribution
accurately and efficiently using the Genz algorithm and by solving a hyperbolic PDE.
Applications to computing the analytic solution of two-factor asset option pricing
problems are given.

17: STL algorithms A-Z. Part I.

18: STL algorithms A-Z. Part II.

19: The solution of nonlinear equations and optimisation. The scope is restricted to the
univariate case.

20: A mathematical background to convection-diffusion-reaction and Black Scholes
PDEs.

21: A Software Framework for the Black-Scholes PDE using the finite difference
method.

22: Extending the functionality of the framework in chapter 21; computing option
sensitivities; an analysis of traditional software design patterns. We also
discuss opportunities to upgrade software patterns to their multi paradigm
extensions.

23: Path-dependent option problems using the finite difference method.

24: Ordinary differential equations (ODEs); theory and numerical approximations.

25: The Method of Lines (MOL) for PDEs.

26: Random number generation; some numerical linear algebra solvers.

27: Interoperability between ISO C++ and the Microsoft .NET Software Framework.

28: C++ Concurrency: Threads.

29: C++ Concurrency: Task.

30: Introduction to Parallel Patterns Library (PPL).

31: Single-threaded Monte Carlo simulation.

32: Multi-threaded Monte Carlo simulation.

Appendix 1: Multi-precision data types in C++ .

Appendix 2: Computing Implied Volatility.

This is quite a list of topics. The first ten chapters are essential reading as they lay the
foundation for the rest of the book. In particular, chapters 2, 3, 4, 5, 7 and 8 introduce the
most important syntax and language features. Chapters 11 to 19 are more or less independent
of each other and we recommend that you read chapter 9 before embarking on chapters 11,
12 and 19. Chapters 17 and 18 discuss STL algorithms in great detail. Chapters 20 to 25
are devoted to PDEs and their numerical approximation using the finite difference method
(FDM). They should be read sequentially. The same advice holds for chapters 28 to 30 and
for chapters 31 to 32.

We have put some effort into creating exercises for each chapter. Reading them and under-
standing their intent is crucial in our opinion. Even better, actually programming these exer-
cises is proof that you really understand the material.



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

6 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

1.5 A TOUR OF C++11: BLACK SCHOLES AND ENVIRONS

Since this is a hands-on book we introduce a simple and relevant example to show some of
the new features in C++ . It is a kind of preview or trailer. In particular, we discuss the Black-
Scholes option pricing formula and its sensitivities. We focus on the analytical solutions for
stock options, futures contracts, futures options and currency options (see Haug 2007). The
approach that we take in this section is similar to how mathematicians solve problems. We
quote the famous mathematician Paul Halmos:

…the source of all great mathematics is the special case, the concrete example. It is
frequent in mathematics that every instance of a concept of generality is, in essence,
the same as a small and concrete special case.

We now describe a mini-system that mirrors many of the design techniques and
C++ language features that we will discuss in the other 31 chapters of this book. Of course, it
goes without saying that we could implement this problem in a few lines of C++ code but the
point of the exercise is to trace the system lifecycle from beginning to end by doing justice to
each stage in the software process, no matter how small these stages are.

We use the following data type:

using value_type = double;

1.5.1 System Architecture

This is the first stage in which we scope the problem (“what are we trying to solve?”) by defin-
ing the system scope and decomposing the system into loosely-coupled subsystems each of
which has a single major responsibility (Duffy 2004). The subsystems cooperate to satisfy the
system’s core process which is to compute plain call and put option prices and their sensitiv-
ities. The architecture is based on a dataflow metaphor in which each subsystem processes
input data and produces output data. Data is transferred between subsystems using a plug
and socket architecture (Leavens and Sitarman 2000). In general, a system delivers a certain
service to other systems. A service has a type and it can be connected to the service of another
system if the other service is of dual type. We sometimes say that a service is a plug and the
dual service is called a socket.

We represent the architectural model for this problem by the UML (Unified Modeling
Language) component diagram in Figure 1.1. Each system does one job well and it interfaces
with other systems by means of plugs and sockets. We first define the data that is exchanged
between systems:

// Option data {K, T, r, sig/v} from Input system
template <typename T>

using OptionData = std::tuple<T, T, T, T>;

// Return type of Algorithm system
// We compute V, delta and gamma
template <typename T>

using ComputedData = std::tuple<T, T, T>;



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 7

BSEngine

Output

plug

socket

AlgorithmInput

socket

plug
I1

I3

I2

F IGURE 1.1 Context Diagram

We also define the interface to compute option price and sensitivities based on option data.
To this end, we use type-safe function pointers:

// The abstract interface to compute V, delta and gamma
template <typename T> using IAlgorithm

= std::function<ComputedData<T> (const OptionData<T>&
optData, const T& S)>;

Having defined the data structures we now need to design the classes in Figure 1.1 that
use them. To this end, we describe how to design these classes.

1.5.2 Deta i led Design

In this case we apply the policy-based design idiom (Alexandrescu 2001) to model the classes
in Figure 1.1. We are not necessarily endorsing this design as being the best one in general but it
does show some of the important design features that we wish to highlight. We model the input
and output systems as template parameters of a template class. We use private inheritance and
template-template parameters to model this class that we call SUD (System Under Discussion)
while we use a signature-based approach to model the algorithms to compute option prices
and sensitivities:

template <typename T, template <typename T> class Source,
template <typename T> class Sink>

class SUD : private Source<T>, private Sink<T>
{ // System under discussion, in this case for Black Scholes equa-
tion



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

8 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

private:
// Define 'provides'/'requires' interfaces of satellite systems
using Source<T>::getData; // Get input
using Sink<T>::SendData; // Produce output
using Sink<T>::end; // End of program

// Conversion
IAlgorithm<T> convert;

public:
SUD(const IAlgorithm<T>& conversion): convert(conversion) {}
void run(const T& S)
{

// The main process in the application
OptionData<T> t1 = getData(); // Source
ComputedData<T> t2 = convert(t1, S); // Processing
SendData(t2); // Sink

end(); // Notification to
Sink

}
};

Thus, this class inherits from its source and sink classes and it is composed of an algorithm.
The member function run() ties in the participating systems to produce the desired out-

put. We should have a clear idea of the data flow in the system.

1.5.3 L ibraries and Algorithms

Examining Figure 1.1 we see that the Algorithm subsystem computes option prices from
option data. It has the same signature as the interface IAlgorithm and this means that we can
configure these algorithms with any other callable object (for example, a free function, func-
tion object or lambda function) that has the same signature as IAlgorithm. This means that
we do not need to create class hierarchies to achieve this level of flexibility. Furthermore, we
can switch algorithms at run-time more easily than with traditional object-oriented technology.

C++ has support for a number of mathematical functions that are useful in computational
finance. In this section we introduce the error function that allows us to compute the univariate
cumulative normal distribution:

// Normal variates etc.
double n(double x)
{

const double A = 1.0 / std::sqrt(2.0 * 3.14159265358979323846);
return A * std::exp(-x*x*0.5);

}

// C++11 supports the error function



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 9

auto cndN = [](double x)
{ return 0.5 * (1.0 - std::erf(-x / std::sqrt(2.0))); };

double N(double x)
{ // The approximation to the cumulative normal distribution

return cndN(x);
}

We now use these functions to compute the analytical solution of plain call and put option
prices and their sensitivities. The aggregated value is placed in a tuple which is a new data type
in C++11:

// Option Pricing; give price+delta+gamma
template <typename V>

ComputedData<V> CallValues(const OptionData<V>& optData,
const V& S)
{

// Extract data
V K = std::get<0>(optData); V T = std::get<1>(optData);
V r = std::get<2>(optData); V v = std::get<3>(optData);
V b = r; // Stock option

// Common functionality
V tmp = v * std::sqrt(T);
V d1 = (std::log(S / K) + (b + (v*v)*0.5) * T) / tmp;
V d2 = d1 - tmp;

V t1 = std::exp((b - r)*T); V t2 = std::exp(-r * T);
V Nd1 = N(d1); V Nd2 = N(d2);

V price = (S * t1 * Nd1) - (K * t2* Nd2);
V delta = t1*Nd1;
V gamma = (n(d1) * t1) / (S * tmp);

return std::make_tuple(price, delta, gamma);
}

// Option Pricing; give price+delta+gamma
template <typename V>

ComputedData<V> PutValues(const OptionData<V>& optData,
const V& S)
{

// Extract data
V K = std::get<0>(optData); V T = std::get<1>(optData);



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

10 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

V r = std::get<2>(optData); V v = std::get<3>(optData);
V b = r; // Stock option

// Common functionality
V tmp = v * std::sqrt(T);
V d1 = (std::log(S / K) + (b + (v*v)*0.5) * T) / tmp;
V d2 = d1 - tmp;

V t1 = std::exp((b - r)*T); V t2 = std::exp(-r * T);
V Nmd2 = N(-d2); V Nmd1 = N(-d1);

V price = (K * t2 * Nmd2) - (S * t1* Nmd1);
V delta = t1*(Nmd1 - 1.0);
V gamma = (n(d1) * t1) / (S * tmp);

return std::make_tuple(price, delta, gamma);
}

We see how useful tuples are as return types of functions. This is a more efficient solution
than creating a separate function for each of an option’s price, delta and gamma functions.

1.5.4 Conf igurat ion and Execut ion

We now discuss how to configure the objects and interfaces in Figure 1.1. This usually takes
place by either creating the needed objects directly in the body of main() or by outsourcing
this process to creational design patterns and builders (see GOF 1995). In general, we need to
choose what we want. As an example, we consider the following hard-coded source and sink
classes:

template <typename T> class Input
{
public:

static OptionData<T> getData ()
{ // Function object

T K = 65.0; T expiration = 0.25;
T r = 0.08; T v = 0.3;
OptionData<T> optData(K, expiration, r, v);

return optData;
}

};

template <typename T> class Output
{



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 11

public:

void SendData (const ComputedData<T>& tup) const
{

ThreadSafePrint(tup);
}

void end() const
{

std::cout << "end" << std::endl;
}

};

Multiple threads can write to the console in a non-deterministic way. For this reason we
create a lock on the console if and when we port the single threaded code to a multithreaded
program. The corresponding thread-safe code is:

template <typename T>
void ThreadSafePrint(const ComputedData<T>& tup)

{ // Function to avoid garbled output on tbe console

std::mutex my_mutex;
std::lock_guard<std::mutex> guard(my_mutex);
std::cout << "(" << std::get<0>(tup) << "," << std::get<1>(tup)

<< "," << std::get<2>(tup) << ")\n";
}

We create classes to model calls and puts as follows:

template <typename T> class Processing
{
public:

ComputedData<T> convert(const OptionData<T>& optData,
const T& S) const

{
return CallValues(optData, S);

}

ComputedData<T> operator () (const OptionData<T>& optData,
const T& S) const

{
return CallValues(optData, S);

}



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

12 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

};

template <typename T> class ProcessingII
{
public:

ComputedData<T> convert(const OptionData<T>& optData,
const T& S) const

{
return PutValues(optData, S);

}

ComputedData<T> operator () (const OptionData<T>& optData,
const T& S) const

{
return PutValues(optData, S);

}

};

Having created the objects that we need we are now in a position to run the
application:

Processing<value_type> converter;

// Calls
SUD<value_type, Input, Output> callPricer(converter);
value_type S = 60.0;
callPricer.run(S);

// Puts
ProcessingII<value_type> converter2;
SUD<value_type, Input, Output> putPricer(converter2);
value_type S2 = 60.0;
putPricer.run(S2);

The output in this case is:

(2.13337,0.372483,0.0420428)
end
(5.84628,-0.372483,0.0420428)
end



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 13

1.6 PARALLEL PROGRAMMING IN C++ AND PARALLEL
C++ LIBRARIES

The C++ Concurrency library supports both multithreading and multitasking, that is creating
programs that are executed by multiple independent threads of control. Multithreading is
preemptive in the sense that the scheduler allocates a fixed amount of time (a quantum) to
each thread after which time the thread reverts to sleep or to wait-to-join mode. The library also
supports the creation of programs and algorithms by decomposing them into components that
can potentially run in parallel with little interaction between them. In general terms, potential
or exploitable concurrency involves our being able to structure code to permit a problem’s
subproblems to run on multiple processors. Each subproblem is implemented by a task. A task
(Quinn 2004) is a program in local memory in combination with a collection of I/O ports.
Tasks send data to other tasks through their output ports and they receive data from other tasks
through their input ports.

We take a simple example. In this case we parallelise the code in section 1.5.4. Both of the
following solutions are special cases of a more general fork-join idiom in which a single (main)
thread creates two child threads. Each child thread executes code independently of the other
child threads. Since the shared data is read-only in this special case then there is no danger
of non-deterministic behaviour. For both solutions the main thread or task must wait on its
children to complete before it can proceed.

We now describe the solution using C++ Concurrency. We first encapsulate the algo-
rithms in stored lambda functions:

// Parallel execution
auto fn1 = [&converter](value_type S)
{

SUD<value_type, Input, Output> callPricer(converter);
callPricer.run(S);

};

auto fn2 = [&converter2](value_type S)
{

ProcessingII<value_type> converter2;
SUD<value_type, Input, Output> putPricer(converter2);
putPricer.run(S);

};

The stock value is:

value_type stock = 60.0;

The solution using C++ threads is:

// Threads
std::thread t1(fn1, stock);



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

14 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

std::thread t2(fn2, stock);

// Wait on threads to complete
t1.join(); t2.join();

For the task-based solution we use C++ asynchronous futures:

// Asynchronous Tasks
std::future<void> task1(std::async(fn1, stock));
std::future<void> task2(std::async(fn2, stock));

// Wait on threads to complete
task1.wait(); task2.wait();

// Get results from tasks
task1.get(); task2.get();

Our final example is to show how to parallelise this code using the OpenMP library
(Chapman, Jost and Van der Pas 2008). We do not discuss this library in this book but we
recommend it as a good way of learning how to write multithreaded applications before mov-
ing to C++ Concurrency. In this case we create an array of threads and we execute them using
loop-level parallelism:

// OMP solution
std::vector <std::function<void(value_type)>> tGroupFunctions

= { fn1, fn2 };

value_type stock = 60.0;

#pragma omp parallel for
for (std::size_t i = 0; i < tGroupFunctions.size(); ++i)
{

tGroupFunctions[i](stock);
}

The output produced from this code is:

(2.13337,0.372483,0.0420428)
end
(5.84628,-0.372483,0.0420428)
end
(2.13337,0.372483,0.0420428)



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 15

end
(5.84628,-0.372483,0.0420428)
end
(2.13337,0.372483,0.0420428)
end
(5.84628,-0.372483,0.0420428)
end

In general, writing parallel applications using tasks is easier than using threads because
tasks hide many of the tricky synchronisation and notification use cases when using threads
and it is possible to apply the system decomposition technique (Duffy 2004) to help create
task dependency graphs that we then implement in C++ .

1.7 WRIT ING C++ APPLICATIONS; WHERE AND
HOW TO START?

This book centres around the modern multiparadigm language features in C++11 and C++14.
We discuss most of the essential language features in the first ten chapters. Later chapters
introduce a number of topics that build on these first ten chapters. These are shown in Figure
1.2 in the form of a concept map. The main goal of this book is to develop tools to show
how to design and implement software systems for computational finance applications. Based
on this remark we show in Figure 1.2 how we will achieve the goal by displaying the main
concepts and their relationship with C++ . In general, we use standard C++ in most of the
examples unless otherwise mentioned. The book is self-contained in the sense that we prefer
to use standard libraries (such as those in C++ as well as Boost and Quantlib) rather than
proprietary libraries. The code for the numerical methods in the book is self-contained and
has been developed by the author.

We give a short description of the concepts in Figure 1.2 and their relationship with the
applications in this book:

� A: We develop code for well-known numerical methods such as numerical differentia-
tion, interpolation, numerical quadrature, matrix algebra, finding the zeroes of nonlinear
equations and optimisation problems.

� B: We use the Boost C++ libraries when we need functionality that is not (yet) in C++ .
Much of the new functionality in C++ had its roots in Boost. In general, the Boost libraries
tend to be reasonably well-documented. We recommend the Boost Math Toolkit for
numerical applications. We also use the Boost odeint library to numerically solve sys-
tems of ordinary differential equations (ODEs).

� C: This book is unique in our opinion because it introduces a defined process to analyse,
design and implement any kind of software system in a step-by-step fashion. The process
is based on the author’s experience as requirements analyst and software architect in sev-
eral application domains (see Duffy 2004 where these domains have been documented).
The process is a fusion of Structured Analysis (De Marco 1978) and the object-oriented
paradigm. We apply the process to creating design blueprints for Finite Difference (FDM)
and Monte Carlo applications.



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

16 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

C++

Applications

Monte Carlo PDE

Numerical 

Methods

Cholesky

Boost C++

uBLAS
Parallel 

Computing

TasksThreads

C++/CLI

Patterns Top-Down

.NET Interop

Design

E

F A

B

C
D

such as such as

such as

such as
such as

such as

such as

with
with

F IGURE 1.2 C++ and Environs

� D: Modern laptop and desktop computers have multiple processors on board. This opens
the door to developing multithreaded and parallel code to increase the speedup of pro-
grams. C++ offers support in the C++ Concurrency library.

� E: We decided to include a chapter on the .NET language C++ /CLI that bridges the
(native/ISO) C++ and .NET worlds. C++ is and remains a systems programming lan-
guage which makes it suitable for certain kinds of applications. The C++ /CLI lan-
guage then allows us to create C++ applications that can call .NET functionality on the
one hand while it is possible to create .NET wrappers for native C++ classes and call
them from C# code. This approach promotes code reusability and helps C# developers
because they do not have to learn C++ . All they need is to wrap C++ code in .NET
wrappers.

� F: In this book, we design option pricing software using lattice methods, Monte Carlo
and Partial Differential Equation (PDE)/FDM methods. We propose a range of numerical
methods, design patterns and design styles. Furthermore, we use C++ Concurrency to
parallelise the corresponding algorithms.

1.8 FOR WHOM IS THIS BOOK INTENDED?

C++ is probably one of the most difficult programming languages to master. The learning curve
is much steeper than that of other object-oriented languages such as C# and Java, for example.



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 17

The only real way to learn C++ is to program in C++ and it is for this reason we say that you
need to have a number of years of solid C++ experience writing code and applications. In
other words, this is not a beginner’s book to learn C++ .

The primary focus of this book is to design and implement maintainable and extend-
able applications and it is suitable for front-office and middle-office quant developers who use
C++ in their daily work. The book is also useful for software architects and project managers
who wish to understand and manage software projects.

This book is also useful for MSc students in finance. We would hope that the step-by-step
approach will help them structure their theses.

The first ten chapters can be read by a range of C++ developers because the topics are
application-independent and to our knowledge this is the first book on the new features in
C++11. Chapters 20 to 25 could also be of interest to mathematical physicists.

1.9 NEXT GENERATION DESIGN AND DESIGN PATTERNS
IN C++

The approach taken in this book is special in the sense that we find it important to have an idea
of the software system that we wish to build before developing the code to implement it. This
is in the interest of developer productivity. We need design blueprints that describe the system
at a level higher than raw C++ code. Computer Science is not yet an engineering discipline
and there are few standardised design processes and standards to help developers analyse,
design and implement C++ applications. One possible exception is the famous software design
patterns that were first published in GOF 1995 although when used on their own they do not
ensure that the software system will be stable.

Design patterns have become very popular in the last 20 years as witnessed by
the number of books devoted to them for object-oriented languages such as Java, C#,
C++ and others. Neither the structure nor the number of patterns have changed much in
the last 20 years as most the literature seems to imitate the 23 patterns in GOF 1995.
In a sense, these patterns were invented when C++ was still in its infancy and when it
only supported the traditional object-oriented technology based on subtype polymorphism
(virtual functions) and class hierarchies. Our basic premise is that the GOF patterns repre-
sent knowledge that has not adapted to improvements in software, hardware and development
methods.

The GOF design patterns are based on the object model which means that the patterns
are implemented using objects, classes and class hierarchies in combination with subtype
polymorphism. This means that an abstract requirement regarding the flexibility of a software
design must be turned into an explicit data model by introducing a proxy for a non-computable
concept. This process is called reification and it allows any aspect of a programming language
to be expressed in the language itself.

It is possible to upgrade the GOF patterns in a number of ways:

� S1: Keep and use the patterns in their current form without change.
� S2: Improve the patterns by using new improved C++ functionality such as shared pointers

and the syntax that we discussed in the first 10 chapters of this book.
� S3: Reengineer those patterns that can be implemented more easily and correctly using

the generic and functional programming models, for example.



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

18 FINANCIAL INSTRUMENT PRICING USING C++ 2E WITH COMPANION WEBSITE

� S4: Do not (yet) use design patterns but instead postpone their use in the design trajectory
for as long as possible. Instead, we use the system decomposition techniques of chap-
ter 9 and we hope to achieve the same (and improved) levels of flexibility as with GOF
patterns but then by other means, specifically by defined standardised interfaces between
components.

1.10 SOME USEFUL GUIDEL INES AND DEVELOPER FOLKLORE

We conclude this chapter with some guidelines on the estimation, planning and management
of software projects. The size of a project can range from a one-person software endeavour
lasting three months to a 30-person application with a lifetime of five years, for example. Some
of the principles underlying our design approach can be summarised by the steps that György
Pólya described when solving a mathematical problem (Pólya 1990):

1. First, you have to understand the problem.
2. After understanding, then make a plan.
3. Carry out the plan.
4. Look back at your work. How could it be better?

We see these steps as being applicable to the software development process in general and
to the creation of software systems for computational finance in particular. Getting each step
right saves time and money. In short, we take the following tactic regarding software projects:
get it working, then get it right and only then get it optimised (in that order). In the current
context we translate these steps into a defined software process (as explained in chapter 9) in
order to avoid some scary outcomes, for example:

“A Big Ball of Mud is a haphazardly structured, sprawling, sloppy, duct-tape-and-
baling-wire, spaghetti-code jungle. These systems show unmistakable signs of unreg-
ulated growth, and repeated, expedient repair. Information is shared among distant
elements of the system, often to the point where nearly all the important information
becomes global or duplicated. The overall structure of the system may never have
been well defined. If it was, it may have eroded beyond recognition. Programmers
with a shred of architectural sensibility shun these quagmires. Only those who are
unconcerned about architecture, and, perhaps, are comfortable with the inertia of the
day-to-day chore of patching the holes in these failing dikes, are content to work on
such systems.”

We use the following general principles when developing software systems:

1. Understand the problem as soon as possible. Can you explain the problem to non-
developers?

2. Can you develop a software prototype in a few days?
3. Scope the problem by identifying the boundaries of the software system.
4. Decompose the system into loosely-coupled subsystems.
5. Use a suitable combination of the object-oriented, generic and functional programming

styles.



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

A Tour of C++ and Environs 19

Each developer has her own way to design software systems. There is no silver bullet
(Brooks 1995).

1.11 ABOUT THE AUTHOR

Daniel J. Duffy is the author of both the first and second editions of Financial Instrument
Pricing using C++ . He started his company Datasim in 1987 to promote C++ as a new object-
oriented language for developing applications. He played the roles of developer, architect and
requirements analyst to help clients design and analyse software systems in areas such as Com-
puter Aided Design (CAD), process control and hardware-software systems, logistics, holog-
raphy (optical technology) and computational finance. He used a combination of top-down
functional decomposition and bottom-up object-oriented programming techniques to create
stable and extendible applications (for a discussion, see Duffy 2004 where we have grouped
applications into domain categories). He also worked on engineering applications in oil and
gas and semiconductor industries using a range of numerical methods (for example, the finite
element method (FEM)).

Daniel Duffy has BA, MSc and PhD degrees in pure and applied mathematics (from
Trinity College, The University of Dublin) and has been active in promoting partial differen-
tial equation (PDE) and finite difference methods (FDM) for applications in computational
finance. He was responsible for the introduction of the Fractional Step (Soviet Splitting)
method and the Alternating Direction Explicit (ADE) method in computational finance.

He is the originator of two popular C++ online courses on www.quantnet.com in coop-
eration with Quantnet LLC and Baruch College (CUNY), NYC. He also trains quant devel-
opers around the world. He can be contacted dduffy@datasim.nl. The official Datasim site is
www.datasimfinancial.com.

1.12 THE SOURCE CODE AND GETTING THE SOURCE CODE

The C++ code in this book is based on the C++11 standard (and later versions). The only
exception is the code in chapter 14 in which we introduce the Excel Driver library and chapter
27 where we discuss interfacing between C++ and Microsoft’s .NET Framework. Furthermore,
the code that is presented in each chapter is machine-readable and has been tested beforehand.
Our development environment is Visual Studio C++ which supports all the C++ functionality
that we present in this book. We have not tested the code using other compilers but we would
not expect major issues. It is the responsibility of the reader to know how to install the compiler,
Boost C++ libraries and Quantlib.

Regarding copyright, legitimate owners of the book are entitled to the source code which
can be used for personal use provided you do not remove the copyright notice in the source
code (C)Datasim Education BV 2018.

For further queries concerning training and support, please contact me directly at
dduffy@datasim.nl,



JWBK934-01-sample JWBK934-Duffy April 18, 2018 21:35 Printer Name: Trim: 244mm × 170mm

U
N

C
O

R
R

E
C

T
E

D
PR

O
O

FS

20


