
1

Course Computational and Quantitative Finance in C++

Contents

Module 1: Primer and Fundamental C++ Syntax
In this module we introduce basics of the C++
language, including essential syntax, how to create
functions and classes and how to integrate the code
into a C++ project.

 Refresher C language

 Learning the C++ project environment

 From source code to running program

 Creating basic C++ classes: header and code files

 Creating robust classes (const, call by
value/reference)

 Operator overloading in C++

 Creating user-defined operators

 Memory management: heap, stack and static

 Implementing contracts: exception handling in C++

 Project: creation simple C++ classes for financial
derivatives

After having completed this module you will be in a
position to write, compile and run C++ applications
and be able to test and debug code quickly and
effectively. This means that you will not lose
valuable time. We take a number of examples from
finance, namely exact formulas for option pricing
and the creation of C++ classes that model
derivatives.

Module 2: Advanced C++
In this module we introduce a number of advanced
techniques that promote the flexibility and
robustness of your C++ applications. This is a crucial
module because many C++ applications use these
techniques and they allow us to extend and modify
system code with a minimum of impact on the
stability of the application.

 Pointers: native C++, C++0X pointers

 Modelling functions: by pointers and by function
objects

 Applications in finance

 An introduction to inheritance and composition in
C++

 Virtual and pure virtual functions

 Tips and guidelines when using inheritance

 Combining inheritance and composition

 Run-Time Type Information (RTTI)

 Factoring common code using the Template Method
Pattern

 Project: creating flexible payoff hierarchies

After having completed this module you will be able
to create extendible and understandable C++ class
hierarchies for financial derivatives. We shall use
these classes as reusable building blocks when we
develop applications in later modules.

Module 3: C++ Templates and the Standard
Template Library (STL)
This module introduces the student to Generic
Programming (GP) and its implementation in C++,
namely the template mechanism. We discuss the
fundamental syntax issues and we show how to
create templated functions and classes.
Furthermore, we show how to integrate and
combine templates with the inheritance and
composition techniques that we discussed in
previous modules. Having learned what templates
are we then proceed to discussing the most
important components of STL and their applications.

 An introduction to the generic programming model

 C++ templates: functions and classes Template
specialization

 Combining templates with inheritance and
composition

 An overview of STL

 STL sequence containers: list, vector, deque

 STL iterators

 Associative containers: map, set, multimap, multiset

 STL algorithms: searching, sorting, extraction

 Mutating and Nonmutating algorithms

 Modifying and Nonmodifying algorithms

2

 Project: using templates for financial applications

After having completed this module the student will
understand template programming in C++.

Module 4: Design Patterns
In this module we introduce a number of design
techniques that we deploy in C++ so that our
applications can be customized when requirements
change (as they inevitably do). In particular, we give
an overview of the famous Design Patterns (23 in
total) and we apply the most important ones to
examples and applications in finance.

 What is software design?

 Quick overview of the Unified Modeling Language
(UML)

 The Gamma ("Gang of Four" classification

 Creational patterns: Factory, Singleton, Builder,
Prototype

 Structural patterns: Bridge, Composite, Facade, Proxy

 Behavioural patterns I: Template method, Strategy,
Observer

 Behavioural patterns II: Visitor, Command, Mediator

 Applying design patterns in finance: the steps

 Project: designing and implementing FDM for Black-
Scholes PDE

After having completed this module you will be able
to discover and apply the most appropriate design
patterns for a given problem in finance.

Module 5: Libraries and Interfacing Issues
Whereas the code in Module 4 was concerned with
application logic and algorithms this module
discusses a number of features and tools that allow
us to develop fully-fledged applications, in particular
the input, processing and output modules in an
application.

 C++ Excel integration: xll, Automation and COM
Addins

 Creating xll applications

 Automation Addins and worksheet functions

 COM Addins

 Registration, activation, libraries

 An introduction to ATL (Active Template Library)

 Overview of the Boost library

 Boost random number generators

 Boost multi-array and property map libraries

 Introduction to XML

 DLLs and Libs

 Calibration

 Project: developing Excel Addins for Monte Carlo and
Fixed Income Applications

After having completed this module you will be able
to integrate your code with a number of standard
software environments, such as Excel, Boost and
XML.

Module 6: Integration and Applications: Overview
This is the last module of the course and it is here
that we create a fully-fledged application using the
experience that we have gained in the first five
modules. You can choose the kind of application
(equity, fixed income, commodity) and the numerical
technique (FDM, Monte Carlo, ...) you wish to use.

 Analysis and system decomposition

 Defining inter-system interfaces

 Applying the GOF patterns

 An introduction to multi-threading and parallel
programming

 Implementing finance applications in C++ with
OpenMP

 Testing and profiling your application

 Integration with Excel

 Equity, interest rate and other applications in finance

 Monte Carlo, FDM, quadrature and lattice solutions

Module 7: The Monte Carlo Method in C++
Stochastic Differential Equations (SDE)
 Geometric Brownian Motion (GBM)

 CEV model

 Stochastic volatility

Finite Difference Method for SDE
 Euler and Milstein method for GBM

 Predictor-corrector method

 QE method

Examples
 Short-rate

 Heston

 Jump models

Monte Carlo Engine in C++
 Modular decomposition

 Design of engine (Produce-consumer)

 Random number generators

 Parallel programming

Module 8: The Finite Difference Method in C++
Finite Difference Method (FDM)
 One-factor models

 Plain and barrier options

 Early exercise features

 The Crank Nicolson method

 Comparing FDM with trinomial method

3

Alternating Direction Explicit (ADE) Method
 Background and motivation

 ADE for one-factor models

 ADE for nonlinear pricing models

 Advantages of ADE

Two-Factor Model
 ADI and Splitting Methods

 Craig-Sneyd method

 Mixed derivatives and Janenko method

 ADE for two-factor problems

Module 9: Interest Rate Models in C++
Overview of Bond and Fixed Income Pricing
 Bond Pricing: Design, Implementation and Excel

Interfacing

 Overview of bonds and kinds of bonds

 Bond price and bond yield

 Convexity

 (Macauley) duration

 Accrued interest and dirty price

 Day count conventions

Short-term Interest Rate Futures and Options
 Introduction (short term interest rate futures and

option description)

 Organizing and manage futures data and code

 Conventions for Liffe Futures

 Pricing Option

 Working Example: portfolio of options

Interest Rate Models
 Vasicek, CIR, Hull-White

 Exact solutions

 Approximate solutions: lattice, PDE, MC

 Calibration

Module 10: Excel Interoperability
 Creating Automation Add-ins in C++

 Guid, ProgId, ClassInterface

 Referencing the Excel Application

 Registering COM components

 Loading and using Automation Add-ins

 Versioning

 Volatile Cells

COM Add-ins
 Background

 ATL projects with IDTExtensibility2 support

 Managed and unmanaged add-ins

 VS add-ins and shared add-ins

 Shared Add-in Wizard

 Extendibility projects

Examples
 Monte Carlo Engine

 PDE solvers

 Integration with boost Math Toolkit

After having completed this module you will have
used C++ in combination with mathematical
methods for finance to produce a working system.

Project: term (final) project
The examiners will review your project and a small
exam will be given.

