Exercise 4 Type Traits

© Datasim Education BV 2018

1. (Other Type Traits, Investigation)

This exercise entails determining which type traits functions to use for the following functionality. Having
discovered the appropriate functions then create some code with two specific types to show how it works:
a) lIs atype either a signed or an unsigned arithmetic type?

b) Make a given integral type signed/unsigned.

c) Obtain the number of dimensions of an array type.

d) Remove/ add a pointer from or to a given type.

e) Remove/add reference from or to a given type.

2. (Pointers and non-Pointers)
This exercise consists of calling some functions from the Primary type category.

Answer the following questions:

a) Write a function to determine if a type is a pointer, null pointer, Ivalue reference or rvalue reference.
b) Determine if a type is a member function pointer or if it is a pointer to a non-static member object.
c) Is ashared pointer a pointer type? Is it a pointer type when converted to a raw pointer?

Typical code is:

template <typename T>
void IsPointer (const T& t)
{ // First example of type traits;check if t is a pointer

// Return type is std::true type or std::false type
if (std::is pointer<T>::value)
{

std::cout << "This is a pointer type argument\n";

}

else

{

std::cout << " not_ a pointer type argument\n";
}
}

3. (Simple switchable Bridge Functionality)

We create a template function that supports both pointers and reference types. If it is a pointer it is
dereferenced and then printed while if it is not a pointer type and if it is a scalar reference type then it is
printed directly. Use the is_pointer () function in conjunction with std: :true type and
std::false_type to determine which implementation to call.

4. Give the top two advantages of type traits:

a) Creating type-independent code.

b) “Compile-time” reflection.

c) ltis areplacement for subtype polymorphism.
d) Itis used to add properties to C++ types.



