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Part K Mathematical and Algorithmic Foundations 
for Machine Learning (ML) 
The main goal of this module is to introduce a 
number of important algorithms in ML by discussing 
them in detail, how they are based on numerical and 
statistical methods and representative code 
examples in C++, Python and C#. In this way we 
make this popular topic accessible to a wide 
audience. We wish to provide insights and a stepping 
stone into algorithms as used in packages such as 
Scikit and TensorFlow. In general, we wish to 
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understand what is happening inside these 
computational black boxes. 
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Your Trainer 
Daniel J. Duffy started the company Datasim in 1987 
to promote C++ as a new object-oriented language 
for developing applications in the roles of developer, 
architect and requirements analyst to help clients 
design and analyse software systems for Computer 
Aided Design (CAD), process control and hardware-
software systems, logistics, holography (optical 
technology) and computational finance. He used a 
combination of top-down functional decomposition 
and bottom-up object-oriented programming 
techniques to create stable and extendible 
applications (for a discussion, see Duffy 2004 where 
we have grouped applications into domain 
categories). Previous to Datasim he worked on 
engineering applications in oil and gas and 
semiconductor industries using a range of numerical 
methods (for example, the finite element method 
(FEM)) on mainframe and mini-computers. 

Daniel Duffy has BA (Mod), MSc and PhD degrees in 
pure and applied mathematics and has been active 
in promoting partial differential equation (PDE) and 
finite difference methods (FDM) for applications in 
computational finance. He was responsible for the 
introduction of the Fractional Step (Soviet Splitting) 
method and the Alternating Direction Explicit (ADE) 
method in computational finance. He is also the 
originator of the exponential fitting method for time-
dependent partial differential equations. 

He is also the originator of two very popular C++ 
online courses (both C++98 and C++11/14) on 
www.quantnet.com in cooperation with Quantnet 
LLC and Baruch College (CUNY), NYC. He also trains 
developers and designers around the world on-site 
and on line. He can be contacted dduffy@datasim.nl 
for queries, information and course venues, in-
company course and course dates 

mailto:dduffy@datasim.nl

