
1

Workshop Advanced C++11, C++14 and C++17 for
Computational Finance

Course Contents

Day 1 New Essential Features
The objective of this part is to discuss new C++
feature that represent major improvements on
C++03 and that we use as building blocks in
applications.

Move Semantics
 What is move?

 Copying versus moving: performance

 Rvalue references

 Move constructor and move assignment operator

 Rule-of-Three and Rule-of-Five for classes

Memory Management and Smart Pointers
 Design rationale

 Class shared_ptr

 Destruction policies

 Class weak_ptr

 Class unique_ptr

Using Smart Pointers
 Smart pointers versus raw pointers

 Classes with embedded pointers

 Reengineering legacy code and software design
patterns

 Move semantics with shared pointers

IEEE 754
 Overview of IEEE 754

 Numerics and IEEE 754

 Rounding rules and exception handling

 Normal, subnormal and infinite numbers; NaN

 Machine precision

 Rounding and cancellation errors

Numerics in C++
 std::numeric_limits<>

 Directed roundings

 Floating-point decomposition functions

 Error analysis

 Comparing floating-point numbers

Basic Containers
 std::forward_listForward list

 Fixed-sized array std::array<>

 std::pair<> and std::tuple<>

 Exception classes

Applications of Basic Containers
 Tuples as function return types and input arguments

 Fixed-sized matrices based on std::array<>

 Using tuples to hold configuration data; tuple nesting

Day 2 Advanced Language Features
In this part we introduce the functional
programming model in C++, type traits (meta
template programming), new abstract data types
and how to us them to create robust code.

Overview C++ as a multi-paradigm programming
language
 Universal function type (polymorphic) wrappers

(std::function)

 Binders and predefined function objects (std::bind)

 Lambda functions versus binders

 A uniform function framework

Lambda Functions
 What is a lambda function?

 The closure of a lambda function

 Using lambda functions with auto

 The mutable keyword

Using Lambda Functions
 Configuring applications

 With algorithms

 As sorting criteria

 As hash function

 Lambda functions versus function objects

 A Taxonomy of Functions in C++

2

Function Pointers and free Functions
 Object and static member functions

 Function objects

 Lambda functions

 Events and signals (Boost signals2 library)

Introduction to Type Traits
 Introduction to metaprogramming

 Defining behaviour based on type

 Type categories

 Using type traits in applications and libraries

Type Categories
 Primary (is a generic type of a given type?)

 Composite (is a type scalar, compound or object?)

 Properties (e.g. is a class abstract)

 Relationships (comparing types In some way)

Some Applications of Type Traits
 Robust numerics libraries

 Compile-time Bridge design pattern

 Type-independent code

Advanced Data Containers and Types
 Bitsets

 Hash function and hash table

 Unordered containers

 C++17 variant type

Random Number Generation and Statistical
Distributions
 Random number engines (basic, adapters and

adapters with predefined parameters)

 Seeding an engine and a collection of engines

 Univariate distributions in C++11

 Some applications

 A generic class for generating variates of an arbitrary
distribution

The new C++ Memory Model
 Sequential consistency

 Ordering non-atomic operations

 Relaxed consistency models

 Total order

Day 3 Libraries and Modern Software Design in
C++
We introduce a number of C++11 libraries that are
important for computational finance, in particular
libraries for random number generation,
multithreading and multitasking. We also gibe a
short critique of traditional software design patterns
and how we replace them by modern
multiparadigm-based patterns in C++. We also show

how system decomposition works and how to design
parallel code for finance.

Introduction to C++ Threads
 What is a thread?

 Creating a thread with various callable objects

 Thread function: pros and cons

 Waiting on a thread; detaching a thread

 Using lambda functions

Atomics
 Atomic types and atomic operations

 Atomic load, store, increment, decrement

 Atomic flags

 Smart pointers and thread-safe pointer interface

Quick Review of Gamma (GOF) Patterns
 Core techniques: subtype polymorphism and

composition

 Summary of creational, structural and behavioural
patterns

 ‘Pattern pruning’ and redundant patterns

 Most important patterns

Modern Software Design in C++11
 Distinguishing between object structure and object

behaviour

 Multi-paradigm design patterns in C++11

 High-priority patterns

Walkthrough: Monte Carlo Model Case (C++11), I
 System decomposition and logical components

 Designing physical components

 Assembling and configuring the application

 Extending the functionality

Day 4 Interoperability, Applications and
Performance
In this last part we set up a student project to
analyse, design and implement two mini-
applications using the techniques from the first
three days. In particular, we focus on the
requirements for PDE (one-factor and two-factor
models) and Monte Carlo applications and we create
the final software product in a series of prototypes,
with each prototype delivering more functionality
than its predecessor.

We provide the PDE and Monte algorithms that you
design and implement in C++. The percentage
theory/practice in this part is approximately
30%/70%.

3

Parallel Design in C++11
 Task/data decomposition and task dependency graph

 Implementing tasks with futures and promise

 Parallel design patterns

 Parallel applications in for computational finance

PDE Model Case, I
 Modelling one-factor and two-factor PDEs in C++

 PDE types

 Creational patterns for PDEs

 PDEs and aggregate structures

PDE Model Case, II
 Modelling the finite difference method (FDM) in C++

 Realising software requirements: customisability,
efficiency and maintainability

 Designing FDM in multi-paradigm C++

Schemes Used
 Crank Nicolson

 Alternating Directions (ADI and ADE variants)

 Soviet Splitting

 Method of Lines (MOL)

Models
 One-factor American options

 Convertible bonds (Hull-White model)

 Two-factor baskets

 Hesston and SABR

Essential Design Patterns used in Software Solution
 Mediator (system decomposition)

 Bridge and Strategy (interoperability and portability)

 Event notification and observers

 Parallel patterns and speedup

Model Validation Requirements
 Computing sensitivities (AD, complex step method)

 Optimisation (Differential Evolution, simulated
annealing, LevMar)

 Comparing accuracy with Monte Carlo and lattices

Your Trainer
Daniel J. Duffy started the company Datasim in 1987
to promote C++ as a new object-oriented language
for developing applications in the roles of developer,
architect and requirements analyst to help clients
design and analyse software systems for Computer
Aided Design (CAD), process control and hardware-
software systems, logistics, holography (optical
technology) and computational finance. He used a
combination of top-down functional decomposition
and bottom-up object-oriented programming
techniques to create stable and extendible

applications (for a discussion, see Duffy 2004 where
we have grouped applications into domain
categories). Previous to Datasim he worked on
engineering applications in oil and gas and
semiconductor industries using a range of numerical
methods (for example, the finite element method
(FEM)) on mainframe and mini-computers.

Daniel Duffy has BA (Mod), MSc and PhD degrees in
pure and applied mathematics and has been active
in promoting partial differential equation (PDE) and
finite difference methods (FDM) for applications in
computational finance. He was responsible for the
introduction of the Fractional Step (Soviet Splitting)
method and the Alternating Direction Explicit (ADE)
method in computational finance. He is also the
originator of the exponential fitting method for time-
dependent partial differential equations.

He is also the originator of two very popular C++
online courses (both C++98 and C++11/14) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He can
be contacted dduffy@datasim.nl for queries,
information and course venues, in-company course
and course dates

mailto:dduffy@datasim.nl

