
1

Applied Numerical Methods with Python and Python
Libraries (code Python)

Module 1 Essential Python Language
Overview/review of how to create functions,
modules and classes that use numerical algorithms
and related data structures.
 Creating Classes in Python

 Naming conventions

 My first class A-Z

 Constructors and initialisation

 Creating objects and class instantiation

 Access control issues

Creating Larger Classes
 Composition and Delegation

 Whole-part objects in Python

 Arrays and collections of objects

 Inheritance and subclassing

 Combining inheritance and composition

Fundamental Arrays and Data Structures
 Basic data types

 One-dimensional arrays; matrices

 n-dimensional arrays (ndarray)

 Data type objects (dtype)

 Tuples, dictionaries and lists

Modules and Packages
 Organising your classes

 Creating modules and accessing their contents

 Nested modules and packages

 Absolute and relative imports

Module 2 Functional Programming in Python
An introduction to functional programming and a
discussion with easy-to-understand examples in
numerical computation and its applications. In
particular, universal functions play a central role.
We also show how to write code that is a mix of
the object-oriented and functional programming
styles.

Introduction to Higher-order Functions (HOFs)
 What can we do with HOFs?

 Simplify HOFs by lambda forms and lambda
expressions

 Lambdas and the lambda calculus

 Apply a function to a collection: map ()

 Pass/reject data with filter ()

Advanced Functional Programming
 Applications of filter ()

 Generator expressions

 Recursion and reduction

 Folds

 Iterables

Universal Functions
 Creating vectorised wrappers

 Handling floating-point errors and callbacks

 How Python implements the IEEE 754 standard

 Casting rules

 Universal function’ methods (for example, reduce,
accumulate)

 Math operations

Exception Handling in Python Programs
 Raising exceptions

 Handling exceptions

 Exception hierarchy and built-in exceptions

 User-defined exceptions

Module 3 Essential Mathematical Structures
Approximation of functions by polynomials is
probably one of the most important activities in
numerical analysis and its applications. To this end,
we show how Python supports these activities. We
also introduce univariate discrete and continuous
statistical distributions as well as random number
generators.

Polynomials
 1d, 2d and 3d polynomials

 The algebra of polynomials

 Power series polynomials

 Operations on polynomials

Special Polynomials and Functionality
 Orthogonal polynomials: Chebychev, Legendre,

Laguerre, Hermite

 1d, 2d and 3d orthogonal polynomial grids

 Least Squares fitting

 Spline fitting

Random Sampling
 Simple random data

 Permuting and shuffling randomly

2

 Continuous and discrete distributions

 Drawing random samples

 Creating histograms

Arrays
 N-dimensional arrays ndarray

 Creating and manipulating arrays

 Iterating over arrays

 Applications

Module 4 Fundamental Numerical Methods
This module introduces several important libraries
that are needed in many kinds of applications and
that we use in later modules.

Integration
 General purpose integration schemes in one, two,

three and n dimensions

 Gaussian and Romberg integration

 Trapezoid and Simpson’s rules

 Gaussian quadrature roots of orthogonal
polynomials

Numerical Solution of Ordinary Differential
Equations (ODE, odeint)
 Real-valued and complex-valued ODEs

 First-order and higher-order ODEs

 Application areas

Statistics
 Random variables

 Probability and cumulative distribution functions

 T-test, Kolmogorov-Smirnov test

 Test for normality

 Comparing two samples

 Estimation

 Kernel density estimation (KDE)

 Univariate and multivariate estimation

 Applications

An Introduction to Optimisation
 Univariate minimisers and root finders

 Unconstrained and constrained multivariate
optimization

 Least squares minimization and curve fitting

 Orthogonal distance regression (ODR)

Module 5 Advanced Numerical Methods
This module is central to all computationally-
intensive applications because it discusses
numerical linear algebra which consists of routines
to solve matrix equations, eigenvalue and
eigenvector computation as well as matrix
decomposition methods based on LAPACK and
Matlab. We also discuss interpolation algorithms
in one and two dimensions.

Mathematical Functions
 Trigonometric and inverse trigonometric functions

 Rounding

 Sums, products and differences

 Exponential and logarithmic functions

Linear Algebra: Overview
 ATLAS LAPACK and BLAS libraries

 Basic routines

 Computing norms

 LU and Cholesky decomposition

Advanced Linear Algebra
 Eigenvalue and eigenvector computation

 Decomposition: QR, Schur, SVD (Singular Value
Decomposition)

 Matrix functions (for example, the exponential of a
matrix)

 Special matrices

Matrix Library (numpy.matlib)
 Matrix objects

 Creating and initializing matrices

 Using matrices in applications

Interpolation
 Overview of univariate and multivariate

interpolation

 Interpolating a 1-d function

 Piecewise polynomial interpolation

 Piecewise linear interpolation in N dimensions

 Interpolation over a 2-d grid

 2d splines

Module 6 Numerical Solution of Ordinary and
Partial Differential Equations (ODE/PDE)
This module introduces modern finite difference
(FDM) schemes that approximate the solution of
time-dependent partial differential equations, in
particular, parabolic PDEs. It prepares the way for
work on computational finance that we discuss in
Module 7.

Automatic Differentiation (AD) Packages
 What is AD?

 Using AD to compute gradient, Jacobian and
Hessian

 Examples: Optimisation and ODE solvers

 Application to sensitivity analysis and Machine
Learning (ML)

Solving ODEs Numerically
 Hand-crafted solutions versus

scipy.integrate.odeint

 Scalar equations and systems of equations

 Stiff and non-stiff problems

 Using scipy.integrate.odeint

3

Some Important Finite Difference Schemes
 Explicit Euler, fully implicit

 Crank Nicolson

 Alternating Direction Explicit (ADE)

 Methods of Lines (MOL) using
scipy.integrate.odeint

Model PDE: the one-Dimensional Heat Equation
 PDE formulation (initial boundary value problem)

 Finite difference methods for the heat equation

 Using Python libraries

 Creating a working program in Python

Implementing Convection-Diffusion-Reaction
(CDR) Equations
 What is CDR?

 Numerical approximation

 Examples and applications

Module 7 Python for Computational Finance
In this module we introduce FDM, lattice and
Monte Carlo (MC) methods to price financial
derivatives containing state-of-the-art algorithms.
The design was first implemented in C++ (by the
originator of this course) and then ported to
Python. This is a quick-start way to learn
computational finance with the least effort.

Option Pricing Analytical Solutions
 The Black-Scholes option pricing formula

 Put-call parity

 Black Scholes greeks (delta, vega, theta, gamma..)

 Analytical formulae for American options

Trees and Binomial Method
 The binomial formula

 Creating a lattice data structure

 Cox-Ross-Rubinstein (CRR) and American options

 Binomial methods and greeks

Monte Carlo Simulation
 Valuation by simulation

 Antithetic variates and variance reduction

 Multiple stochastic factors

 Examples: Arithmetic and Geometric Asian options

Numerical Approximation of Stochastic
Differential Equations (SDE)
 What is an SDE?

 Exact simulation

 Euler-Maruyama method

 Generating paths

 Modified predictor-corrector method

The Finite Difference Method (FDM), first
Principles
 The one-factor Black Scholes PDE: preprocessing

 ADE, fully implicit and Crank Nicolson methods

 Computing option sensitivities

 Early exercise and Brennan-Schwartz condition

FDM, Part II
 FDM for interest rate problems

 Method of Lines (MOL)

 Cox-Ingersoll Ross (CIR) PDE/FDM

 Feller condition

 Callable bond PDE/FDM

Module 8 An Introduction to Machine Learning
(ML)
This module is a gentle introduction to ML, mainly
centered around ready-made Python libraries for
clustering and training.

Background
 High-Level Overview of ML

 Essential underlying numerical methods

 Application areas

 Python for ML

Training Models
 Linear regression

 Gradient descent and its variants (e.g. SGD)

 Polynomial regression

 Learning curves

 Logistic regression

Clustering
 An introduction to vector quantisation

 An introduction to k-means clustering

 Clustering package

 Hierarchical clustering

Module 9 Auxiliary Libraries
This module consists of several utility libraries for
serialisation, multi-dimensional data, date time
functions and producing machine code.

Input and Output Essentials
 Load and save MATLAB files

 Birds’-eye overview of HDF5

 Dictionary of numpy arrays

 Working with NetCDF files

 Examples and applications

Python with HDF5
 HDF5 tools

 Reading and writing data

 Working with datasets

 Chunking and compression

Financial Functions
 Future and (net) present values

 Computing payments

 Internal Rate of Return (IRR)

 Interest rate computation

4

Datetime Support Functions
 Business day functions

 Valid business days

 Rolling

 Number of days between two dates

Advanced Statistical Functions
 Overview of (extensive) functions and their

applications

 Chi-square test

 Kruskal-Wallis

 Kolmogorov-Smirnov

 Calculating regression line

 Geometric and harmonics means

JIT and fast Machine Code
 Introduction to Numba

 Decorating Python code

 When to use Numba

Module 10 Putting it all together: Structuring
your Applications
We have included this module to create an
awareness of methods and design patterns to help
the software developer create maintainable and
extendible code. This is needs when software
systems begin to mature and extended after initial
software prototypes have been created.

Big Picture
 Context diagram and data flow

 System Decomposition

 Finding modules and classes

 Creating a software prototype

 Testing and debugging code

An Introduction to Design Patterns
 What, why, when and how Design Patterns

 Creational, structural and behavioural patterns

 Discovering patterns in your applications

 The top 7 design patterns

Creational Patterns
 Factory Method

 Abstract Factory

 Builder

Structural Patterns
 Adapter

 Façade

 Decorator

 Bridge

Behavioural Patterns
 Mediator

 Command

 Strategy and Template Method

 Visitor

Your Trainer
Daniel J. Duffy started the company Datasim in
1987 to promote C++ as a new object-oriented
language for developing applications in the roles of
developer, architect and requirements analyst to
help clients design and analyse software systems
for Computer Aided Design (CAD), process control
and hardware-software systems, logistics,
holography (optical technology) and
computational finance. He used a combination of
top-down functional decomposition and bottom-
up object-oriented programming techniques to
create stable and extendible applications (for a
discussion, see Duffy 2004 where we have
grouped applications into domain categories).
Previous to Datasim he worked on engineering
applications in oil and gas and semiconductor
industries using a range of numerical methods (for
example, the finite element method (FEM)) on
mainframe and mini-computers.
Daniel Duffy has BA (Mod), MSc and PhD degrees
in pure and applied mathematics and has been
active in promoting partial differential equation
(PDE) and finite difference methods (FDM) for
applications in computational finance. He was
responsible for the introduction of the Fractional
Step (Soviet Splitting) method and the Alternating
Direction Explicit (ADE) method in computational
finance. He is also the originator of the exponential
fitting method for time-dependent partial
differential equations.
He is also the originator of two very popular C++
online courses (both C++98 and C++11/14) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He
can be contacted dduffy@datasim.nl for queries,
information and course venues, in-company
course and course dates

mailto:dduffy@datasim.nl

