UNIVERSITY OF BIRMINGHAM

MASTERS DEGREE THESIS

Sensitivities: A Numerical
Approach

Author: Supervisor:
Matthew ROBINSON Daniel J. DUFFY

Student Number ID: 1346964

A thesis submitted in partial fulfilment of the requirements
for the degree of MSc Mathematical Finance

in the

Department of Economics
Birmingham Business School

UNIVERSITY OF BIRMINGHAM

Abstract

MSc Mathematical Finance

Sensitivities: A Numerical Approach

by Matthew ROBINSON

Sensitivity analysis is widespread across multiple disciplines, focusing on
the effect a parameter change has on some mathematical model. It is widely
accepted that the analysis of sensitivities in finance is of extreme importance,
it can inform investors of the behaviour of financial instruments concerning
the current state of the market; indicating the sensibility of an investment in
bonds or option.

This paper identifies potential methods used to approximate the Black-Scholes
option Greeks and bonds that follow the Cox-Ingersoll-Ross (CIR) interest
rate process. These methods include the Divided Difference method, Cubic
Spline method, Forward Automatic Differentiation, Complex-Step Method,
Method Of Lines scheme, Crank Nicolson method, Alternating Directional
Explicit method and the Continuous Sensitivity Equation approach.

The paper expands on the mathematical background of each method and at-
tempts to approximate such sensitivities using the C++ and MATLAB coding
environments. An emphasis is placed on the Continuous Sensitivity Equa-
tion approach and the issues that present itself when applying the approach
to the approximation of bond sensitivities.

An application of Fichera theory is applied to the Cox-Ingersoll-Ross bond
pricing PDE to identify the conditions necessary to implement boundary con-
ditions. The application of Fichera theory and the Continuous Sensitivity
Equation approach has led to a potential area of new research concerning the
uniqueness of such approximations and whether such equations are well-
posed.

Finally, the importance of choosing the correct boundary and initial condi-
tions is investigated using the Greek Rho partial differential equation. In
closing, it is found that more research needs to be undertaken before the CSE
approach is considered a viable alternative to the Divided Difference and Cu-
bic Spline approach. Despite these findings, the Complex-Step method and
Forward Automatic Differentiation methods produce approximation on par
with the closed-form sensitivity formulae. It is concluded that the Forward
Automatic Differentiation methods ease of implementation into C++ and its
accuracy make it a practical alternative to large closed-form sensitivity equa-
tion such as the CIR volatility sensitivity equation.

ii

Acknowledgements

A special thanks goes to my supervisor Daniel]J. Duffy for putting up with
me over these last few months; answering questions and providing me with
the content required to complete this thesis. Many euros are owed.

An additional thanks goes to my friends and family for the support despite
my stressed and often times agitated demeanour.

Contents

Abstract
Acknowledgements
1 Introduction

2 Financial Instruments and Sensitivities

2.1 Black-ScholesModel
2.2 Black-Scholes Sensitivities
2.3 Cox-Ingersoll-Ross (CIR) Process
2.4 CIR Bond Sensitivities o

PDE Finite Difference Methods
31 Motivation e e
3.1.1 Domain Transformation
312 FicheraTheory
3.1.3 Finite Difference Grid (Mesh)
3.2 Crank Nicolson FDM Method
3.2.1 Generalised Crank Nicolson.
3.2.2 Crank Nicolson Black-Scholes Implementation
3.2.3 Crank Nicolson CIR PDE Implementation
3.24 Thomée Scheme Crank Nicolson
3.3 Alternating Direction Explicit
3.3.1 Generalised Alternating Direction Explicit
3.3.2 B&C ADE Black-Scholes Implementation
3.3.3 B&C ADE CIR PDE Implementation
334 Thomée Scheme ADE
34 MethodofLines
34.1 Generalised Method of Lines
Runge Kutta Dormand-Prince ODE Method
3.42 MOL Black-Scholes Implementation
3.43 MOL CIR PDE Implementation

Sensitivity Approximation Methods

4.1 Divided Difference Method

42 Cubic Spline Interpolation

43 ComplexStepMethod

44 Forward Automatic Differentiation
441 DualNumbers

4.5 Continuous Sensitivity Equation (CSE)

iii

451 Black-Scholes Continuous Sensitivity Equations
DeltaCSE
GammaCSE
VegaCSE.
RhoCSE

452 Cox-Ingersoll-Ross Continuous Sensitivity Equations .
DurationCSE
Convexity CSE
Speed of AdjustmentCSE
Volatility CSE o oo

45.3 Boundary Conditions: Further Research Opportunity?
DurationCSE
Convexity CSE
Speed of AdjustmentCSE
Volatility CSE o
Possible Issues...

5 Code Implementation

51 C++CodeDesign
5.1.1 C++ Definer Code Section
OptionClass.
PDEClasses i i it it

Initial Boundary Value Problem Class

512 C++Solver CodeSection

52 C++ Numerical Method Implementation
52.1 C++CrankNicolson

522 C++ ADEImplementation.

523 C++ Method Of Lines Implementation

5.3 C++ Implementation: Approximation Methods
5.3.1 Divided Difference

5.3.2 Cubic Spline Interpolation

5.3.3 Forward Automatic Differentiation

534 ComplexStepMethod

6 Coding Results
6.1 Closed Form Solutions
6.2 Forward AD, CSM & Closed Form Solutions
6.3 Black-Scholes Numerical Method Approximations
6.3.1 Black-Scholes Option Price
6.3.2 Divided Difference Sensitivity Approximation
6.3.3 Cubic Spline Sensitivity Approximation
6.3.4 Continuous Sensitivity Equations
6.4 Cox-Ingersoll-Ross Numerical Approximations

A Option Greek Derivations
Al GreekDelta e
A2 GreekGamma e
A3 GreekRho

iv

A4 GreekTheta
A5 GreekVega oo

Sensitivity Components
B.1 Speed of Adjustment Closed Form
B.2 Volatility Closed Form

Continuous Sensitivity Equation Derivations
C.1 Black-Scholes Continuous Sensitivity Equation Derivations . .
C11 GreekDeltaCSE
C1l2 GreekGammaCSE
C13 GreekVegaCSE.
C1l4 GreekRhoCSE
C.2 CIR Continuous Sensitivity Equation Derivations
C21 DurationCSE
Duration CSE Domain Transformation
C22 ConvexityCSE
Convexity CSE Domain Transformation
C.2.3 Speed of Adjustment Sensitivity CSE
Speed Of Adjustment CSE Domain Transformation . .
C.2.4 Volatility Sensitivity CSE
Volatility CSE Domain Transformation
C.3 Domain Transformation of the Black-Scholes Equation
C3.1 Transformed VegaCSE.
C3.2 TransformedRhoCSE

C++ Code Appendix

D.1 Crank Nicolson DefinitionsC++ Code
D.2 Method Of Lines Definitions C++ Code
D.3 Black-Scholes Forward ADC++Code

MATLAB Code Appendix
E.1 MATLAB Crank NicolsonCode
E.2 MATLAB Alternating Direction Explicit Code

vi

List of Figures

3.1

3.2
3.3

4.1

51
52
53
54
55
5.6
5.7
5.8
59
5.10
511
5.12

5.13
5.14
5.15
5.16

517
5.18
5.19
5.20
521

6.1
6.2
6.3
6.4
6.5

D.1
D.2
D.3

Implementation of the Thomée Scheme into the Crank Nicol-

sonmethod. o L. 17
Buckova’s ADE upward and downward sweep figure [5, pg.311] 17
Dormand-Prince (1980) Method Coefficient Table [9, pg.23] . . 22
Automatic Differentiation Simplistic Example 29
C++ Code Structure Diagram. 42
C++IBvpClasscppfile. 42
C++ Instantiation Flowchart. 43
C++Option Classhppfile. 44
C++ Black-Scholes Class hpp file. 45
C++ IBvpSolver hppfile. 46
C++ Crank Nicolson Method hppfile. 47
C++ Option Pricing Example. 48
C++1IBvp Results Method. 48
ThetaResultHold Vector Process. 49
Crank Nicolson calculate method. 50
Implementation of the Thomée Scheme into the Crank Nicol-

sonClass. L 52
Alternating Direction Explicit calculate method. 53
Method Of Lines header file.. 55
Method Of Lines main.cpp function. 56
A Simplified diagram to explain the procedure of calculating

Divided Difference sensitivity approximation. 57
Divided Difference main.cpp function. 58
Cubic Spline main.cpp function. 59
C++ CIR Forward AD Header File 61
Complex Step Method main.cpp CIR template function. 63
Complex Step Method main.cpp CIR sensitivity functions. . . . 64
CIR bond priceresultstable 75
CIR bond price approximations 76
CIR Divided Difference Duration approximations 77
CIR Divided Difference Convexity approximations. 78
CIR ADE Volatility CSE approximations 79
C++ Crank Nicolson Definitions File 92
C++ Crank Nicolson Definitions File 93
C++ Crank Nicolson Definitions File 94

D.4
D.5
D.6
D.7
D.8
D.9

E1
E.2
E.3
EA4
E5
E.6

vii

C++ Method Of Lines Definitions File 95
C++ Method Of Lines Definitions File 96
C++ Method Of Lines Definitions File 97
C++ Method Of Lines Definitions File 98
C++ Black-Scholes Forward AD Header File 99
C++ Black-Scholes Forward AD Header File 100
C++ CN MATLAB Definitions File 101
C++ CN MATLAB Definitions File 102
C++ CN MATLAB Definitions File 103
C++ CN MATLAB Definitions File 104
C++ CN MATLAB Definitions File 105
C++ CN MATLAB Definitions File 106

viii

List of Tables

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

Black-Scholes Sensitivity FAD and CSM Results 66
CIR Bond Sensitivity FAD and CSM Results 67
Put Option Price Approximations 69
Divided Difference Sensitivity Approximations 70
Cubic Spline Sensitivity Approximations 71
Greek CSE Approximations 72
DeltaCSEPlot 72
Gamma CSEPlot 73
VegaCSEPlot 73
RhoCSEPlot. o o 74

Rho CSE Approximations with varied initial conditions 75

ix

List of Symbols and Abbreviations

Sxa N~ <o

S
~—~
~

<—Q0D=xa T HD>

d/c/r
CN
ADE
CSE
CSM
AD
IBVP

Underlying Security

Option Price

Short Rate

Expiration Time / Time to Maturity

Volatility

Option Strike Price

Standard Normal Cumulative Distribution Function (CDF)
Standard Normal Probability Distribution Function (PDF)
Delta

Gamma

Theta

Rho

Vega

Speed of Adjustment

Long run mean

Such that

For all

Direction-Convection-Reaction
Crank Nicolson

Alternating Direction Explicit
Continuous Sensitivity Equation
Complex Step Method
Automatic Differentiation

Initial Boundary Value Problem

1 Introduction

Financial instruments are tradeable assets ranging from cash, bonds and even
loans. There exist two forms: cash and derivative instruments. zero-coupon
Bonds and European Options will be the focus throughout this thesis where
a range of methods are used to calculate sensitivities concerning a change in
some model parameters such as the interest rate. In most cases, closed-form
solutions do not exist, forcing the use of numerical methods to approximate
such sensitivities.

A range of methods are applied to the above financial instruments where
the implementation and tractability of each method are expanded on. The
results obtained are calculated using C++14 on a 2018 Macbook Pro equipped
with a 6-core i7 2.2GHz processor running Visual Studio via the Parallels
virtualisation software and MATLAB 9.6, using the standard macOS.

Post introduction in Chapter 2, the Black-Scholes model and the Cox-Ingersoll-
Ross zero-coupon bond pricing partial differential equation (PDE) is intro-
duced alongside their respective closed-form sensitivity equations. The the-
ory behind each of the sensitivities is covered.

Within Chapter 3, three numerical methods are covered known as the Method
Of Lines (MOL) scheme; the Crank-Nicolson (CN) scheme and the Alternat-
ing Direction Explicit (ADE) scheme. In each case, these methods are ap-
plied to a generalised diffusion-convection-reaction PDE which can be easily
expressed in terms of the models introduced in Chapter 2.

In Chapter 4, the following methods are introduced: Divided Difference; Cu-
bic Spline; Forward Automatic Differentiation; the Complex-Step Method
(CSM) and the Continuous Sensitivity Equation (CSE) approach. Each of
which is introduced with an emphasis on their functionality in relation to
calculating sensitivities.

Chapter 5 expands on how each method is implemented into C++ with the
addition of code extracts.

In Chapter 6, the above numerical and approximation methods are applied
using C++ and MATLAB with graphical and table representations of the re-
sults obtained using each method.

Lastly, a conclusion on the discovered issues and practicality of the imple-
mented methods are given.

2 Financial Instruments and
Sensitivities

The calculation of sensitivities comprises of two methods: the approxima-
tion of the security, and the application of a second method to calculate the
sensitivity.

The first method requires either a closed-form solution to calculate the exact
option/bond price or a partial differential equation (PDE) that models the
security. The secondary method, once again, is calculated via a closed-form
solution or the pricing PDE that is differentiated using a numerical method.

2.1 Black-Scholes Model

The Black-Scholes model was introduced in 1973 by Black and Scholes [3,
pg.642] and was developed to price the value of an option given some un-
derlying price. However, the model is fundamentally flawed by the market
assumptions imposed on the model, such as:

e A constant interest rate.
e There are no dividend payouts over options lifetime.

e A constant volatility.

Price follows a Brownian motion movement pattern.

Future stock prices follow a log-normal distribution.

Despite the above limitations that do not hold in the market; the model is
used due to the wide variety of academic literature and that no model can
tully capture all aspects of the market. In addition, the Black-Scholes model
uses the cumulative distribution function of the Gaussian distribution, and
the expectations can offer a simple interpretation. Wilmott (2009) [27, pg.139]
remarks that quantitative analysts prefer the closed-form solutions to that of
numerical solutions; given the pressures of choosing a model that satisfies
that requirements of being: robust, fast, accurate and easy to calibrate.

Consider the Black-Scholes model:
%1%

1 5, ,0%V oV B

Chapter 2. Financial Instruments and Sensitivities 3

Where: V = V(S,K,r,0,T).

The Black-Scholes model is also known as a Diffusion/Convection/Reaction
(d/c/r) equation. It follows the layout of models used in science and engi-
neering to describe the movement of some physical quantity in a physical
system governed by a diffusion, convection and reaction process. Concern-
ing the Black-Scholes model, d/c/r corresponds to the convexity, drift and
discounting term which is as follows:

25232V

Convexity: %(T 55z

eyl k1%
Drift: S 35

Discount Term: —rV.

In short, the convexity term measures the amount made from a change in
the underlying price given a hedged (Delta) position. The discount term is
self-explanatory as it is the valuation of the option in present time. Lastly,
the drift consists of the underlying and the risk-free rate which measures the
growth of the underlying given the risk-free interest rate. The above PDE
is used to price European options; however, under the model assumptions,
there exists an analytical closed-form solution for both European put and call
options. Consider the European call closed-form solution:

C(S(t),t) = SN (dy) — Ke "TN (dy). 2.2)

S o2
dy = —ln(K):\(/r%T)T dy = dy—oVT.

The above analytical solution provides an exact option price with the limi-
tation being the machine precision. The closed-form expression will be used
to identify the precise solution to calculate the absolute error of numerical
methods in proceeding chapters.

2.2 Black-Scholes Sensitivities

Greeks are option sensitivities obtained by differentiating the option with re-
spect to some parameter, either analytically or numerically. This thesis will
focus on the following Greeks: Delta; Gamma; Rho; Theta and Vega. In addi-
tion, this subsection will provide the closed-forms for each Greek where their
derivations are given in Appendix A.

Consider the option Greek Delta denoted (A) which is the sensitivity of some
option V' concerning changes in the underlying S. In layman’s terms, it is
a measure on how much the price of an option is expected to change per £1

Chapter 2. Financial Instruments and Sensitivities 4

change in the price of the underlying asset. The closed-form solution of Delta
for a Call option is given by:

APTIES N(dl) > 0. (2.3)

Noticing that the closed-form contains the normal CDF, a property of Delta
presents itself in that the value of Delta cannot be greater than 1 (this will
find use in later chapters). The classically Delta is used in Delta Hedging and
is found in the derivation of Black-Scholes PDE.

Gamma denoted (') is the sensitivity that corresponds to the second deriva-
tive of the option pricing equation with respect to the underlying. Consider

the closed-form : ,
1 —d

T =—————¢7 >0. 24

call/ put Sov/2rT ()

Gamma indicates when a position in the market needs to be re-hedged, en-
suring that a Delta neutral position is maintained. The limitation is that in a
shifting market, continual re-hedging of a Delta hedge is required to main-
tain a position. Gamma has uses for those in the Quant industry as it declares
how much Delta will change given changes in the underlying asset. If one
considers the transactional costs of re-hedging, a smaller Gamma would in-
dicate that little cost is associated with this action, making solutions such as
dynamic hedging plausible. One can summarise by stating that as an option
becomes At-The-Money the more Gamma increases given the great variation
on the position.

Theta (0) is the rate of change of the option price with time. Glendall (2014)
[14] states that "An option is more valuable the longer it is valid"; this is log-
ical as it provides the holder with a higher probability of an option landing
In-The-Money. However, Theta measures a (long) options time decay such
that the closer the option gets to expiry, the more the option price ‘decays’.
Therefore the change in the options price with respect to a one day decrease
until expiry is calculated by the closed-form:

Sl’l(dl)(f

Ocall = —W — T’Ke_rTN(dz). (25)

Vega (V) is arguably the most important Greek as it is a measure of the rate
of change of an options price per percentage change in the implied volatil-
ity of a given underlying. Traders use Vega to identify the sensitivity of a
portfolio to changes in implied volatility and can indicate if an option should
be longed or shorted. For example, a higher Vega (assuming all parameters
are constant) would indicate that an option should be sold, as the increase in
volatility would subsequently increase the options price. This is partly due to
an options increased probability of expiring In-The-Money. The closed-form

Chapter 2. Financial Instruments and Sensitivities 5

solution is given by:

s 4
Veall / put = \/T_T(e 7 VT. (2.6)

Lastly, Rho (p) is the sensitivity an option price with respect to changes in
the risk-free interest rate and measures the change in the price of an option
given a percentage change in the interest rate. Therefore indicating whether
a trader would expect the option price to rise and fall should the risk-free
rate change. The closed-form (call) solution is given by the following:

Ocait = TKe "IN (dy) > 0. 2.7)

2.3 Cox-Ingersoll-Ross (CIR) Process

Single-factor models are processes that assume that a specified factor, such as
the interest rate can summarise the term structures behaviour at any point in
time. The general form of a single factor model consists of a time-dependent
drift term and some stochastic term that attempts to recreate the random
nature of the state variable.

The interest rates term structure is the relation between the term to maturity
and the interest (or bond yields). The graphical representation of the term
structure is classically known as the yield curve and represents the market’s
attitude towards future events. Modelling the term structure theoretically
provides one with the ability to anticipate the sensitivity of the yield curve to
changes in variables that affect the term structure.

Cox, Ingersoll and Ross understood that modelling the term structure was of
high importance and developed the CIR model in 1985 [8, pg.390-91] under
the assumptions that:

e Changes are described by a single state variable.

e The development of the state variable is governed by a stochastic dif-
ferential equation.

o The rate of return has mean and variances proportional to the state vari-
able.

Giving rise to the (later known) CIR model:

dr(t) = x(© — r(1)) + oy/r()dw(®). 2.8)

The stochastic differential equation adheres to Brownian motion w(t) (under
risk neutrality) and possesses the important quality in that there exists no
negative interest rates. In addition, ®, ¢ and x remain non-negative via the
Feller condition which will be expanded on in later chapters.

Chapter 2. Financial Instruments and Sensitivities 6

Subsequent chapters will focus on the application of the CIR process in the
pricing of zero-coupon bonds. Where at maturity a payoff of 1 is returned
which translates to the initial condition of the zero-coupon bond pricing PDE,

see :
0B 12828 dB
= t50r55 + (@ —r) = Ae)=> — 1B =0. (2.9)

Where Ac = © — r and the boundary condition is B(T, T) = 1.

For this thesis 2.9 will be expressed as the following, where 2 = ©Ox and
b= x..

B _1, 0°B 0B
5 =37 57 + (a— br)g —rB. (2.10)

Which follows the fundamental bond pricing equation (see Wilmott (2007)
[28, pg.362-63] for the bond pricing PDE derivation) and holds similar form
to general d/c/r equations. which will be discussed further in later chapters.
Similarly to 2.1, the PDE has an exact solution under no-arbitrage arguments
at time ¢ given some expiry time: T (Cox et. al (1985) [8, pg.393]):

B(r,t,T) = a(t, T)e b¢T)r,

2k©

P T 2fye(V+K)(T_t)l o2
D\ g GaaEer o)

2(e7(T7t) — 1)
b(t, T) =)
) = e @)

v =V K>+ 202

(2.11)

2.4 CIR Bond Sensitivities

When considering the bond market, investors will identify the expected per-
formance of the bond should interest rates change; allowing them to identify
the risks associated with purchasing a bond. In the case of this thesis, the
following sensitivities are expanded upon Duration, Complexity, the expiry
sensitivity, speed of adjustment sensitivity and the volatility sensitivity.

Duration (denoted D) is simply a measurement of a bond’s sensitivity to a
change in the interest rate and is dependent on the bonds term to maturity,
yield and the coupon rate. In the words of Choudhry (2005 [7, pg.32]), "The
average time until receipt of a bond’s cash flows, weighted according to the
present values of these cash flows, measured in years, is known as Duration".
In general, a bond that has a higher calculated Duration will indeed have
greater risks associated with interest rate changes. The bond is said to have
a higher sensitivity in this regard. Duration is known in two forms:

e Macaulay Duration.

Chapter 2. Financial Instruments and Sensitivities 7

e Modified Duration.

The prior is defined as the weighted average term to maturity of bond cash
flows. The later is the inverse changes in bond prices as a result of small
changes in interest rates. This thesis will focus on the modified definition of
Duration.

An important note is that this thesis uses the zero-coupon bond pricing PDE.
Therefore, no coupon payments over the bonds lifetime result in a Duration
that is equivalent to the bond’s maturity (see Webber and James (2000 [26,
pg-116]) proof). Similar to the Black-Scholes Greeks, the establishment of
the closed-form bond equation 2.11 gives rise to the following closed-form
solution:

D_ﬁ_

—a(t, T)b(t, T)e P& (®), (2.12)
Duration is, by definition, a linear relationship between the change in yield
and the change in bond price. Therefore if the Duration is approximated at
a singular point, then a flaw in Duration is encountered. If there exists any
deviation from that point inaccuracies are introduced, resulting in either over
or under-estimations of the sensitivity

Convexity (denoted C) alleviates this issue by being a second-order measure-
ment on the interest rate risk of a bond. Similarly to Greek Gamma (2.4), it
identifies how quickly a bond price is likely to change given any interest rate
change. It holds the advantage that the error associated with the Duration is
adjusted for by measuring the curvature on the yield curve. Choudhry (2005
[7, pg.44-45]) provides an excellent summary of the bonds price regarding
convexity, where a positive convexity would indicate an increased Duration
and fallen yield. Therefore the bond would subsequently experience a price
increase.

Convexity is, by definition, the second derivative of the bond price with re-
spect to the interest rate. Consider the closed-form solution of convexity:

c 9*B 2 —b(tT)r(t)
=52 = a(t, T)b(t, T)%e "\ : (2.13)
The remaining sensitivities have little to no current literature. This stems
from the "usefulness’ of such sensitivities and the difficulty in calculating
them. Beginning with the sensitivity of a bond to its maturity, the following
closed-form solution is calculated by differentiating 2.11 with respect to T
when t = 0:

9B _ 0a(0,T) _pi0,1)r(0)
aT oT
Where:

—a(0,T) ab(aO%T) r(0)e b0 (), (2.14)

Chapter 2. Financial Instruments and Sensitivities 8

2K0 T k O(y+x)T @
2 _ _ 2 Y
d9a(0,T) _ € ©2 0% (y+x)(y—r)(e?" 1) (e 7) ((7+K)(87T_1)+27) 7
o o2 ((y+1)e T +y—x)
9b(0,T) _ 4% T
aT T ((re)er Ty —x)?

The sensitivity associated with the speed of adjustment (k) has a closed-form
representation which is as follows:

OB _ 9a(t, T/%) —b(e, 0 (t)

dB ob(t, T,x)
oK oK

s r(Be TN (2.15)

—a(t, T,x)

Where aa(g,;r) and ab(g,;’,(r ~) are given in Appendix B.

The final sensitivity is the sensitivity of the bond with respect to its volatility.
Consider the following closed-form:

0B _ M[b(t,ﬂv)r(t) —a(t,T,0)

JB ob(t,T,o)
o124 ol

oy r(£)e P T (2.16)

Where 8a(ta,;",(7) and ab(g,;,(r) are given in Appendix B.

A possible explanation for the lack of literature lends itself to the substantial
equations associated with the closed-form solutions, making them extremely
impractical for coding purposes. However, for the sake of consistency, each
of the above closed-forms will be used in later chapters.

3 PDE Finite Difference Methods

Given the analytical formulae of the Greeks and bond sensitivities, one may
ask if these closed-form solutions can always be found? In short, no. Closed-
form solutions may not exist or be impractical to implement; therefore, finite
difference methods (FDMs) and methods of a similar nature are introduced
to approximate such solutions. The following section applies finite difference
methods to linear one-factor d/c/r equations to price financial derivatives
and instruments.

3.1 Motivation

Consider equation 2.1, the Black-Scholes PDE contains one space variable (S)
and one time variable (t). Given that most d/c/r equations are defined on a
semi-infinite (0 < S < oo, t > 0) or infinite domain (—o0 < S < oo, t > 0),
there exists an infinite number of possible solutions. Finite difference meth-
ods restrict this domain to ensure a unique solution exists by imposing con-
straints, classically known as the boundary conditions and the initial condi-
tion. Consider the following types:

e Dirichlet - Solution is identified on the boundary.
e Neumann - Directional Derivatives are given on the boundary.

The remaining types include Robin, Mixed and Cauchy: that are not covered
in this thesis.

Consider the generalised linear one factor d/c/r equation, where the bound-
ary conditions are defined on some bounded domain [A, B] for t € (0,T) ,
where A < B:

—aa—‘t/-l—oc(x,t)aazT‘z/—i—ﬁ(x,t)aa—‘;-|—'y(x,t)V=O, O<x<oo,t>0

V(x,0) = f(x), 0<x<oo. Initial Condition.

| V(A,t) = Calt), V(B,t) = {p(t). Boundary Condition.

It is clear from the above that three unknowns f(x), {4(t) and {p(t) exist.
The initial condition is defined based on the PDEs function and is usually

Chapter 3. PDE Finite Difference Methods 10

related to a payoff function such as an option or bond payoff. The bound-
ary conditions require a transformation to a bounded domain [A, B] using
the following methods: Domain Truncation, Domain Transformation (see
Duffy (2009) [11, pg.5-7]), the PDE Conservative Form and Log Transforma-
tion. However, only the truncation and transformation methods are applied
within this thesis.

Domain truncation is defined as transforming the domain of a PDE to that of
a bounded domain (i.e. [A, B]). However, there exists much uncertainty on
how this can be accomplished in the literature. Duffy (2009) [11, pg.4] high-
lights the issue with domain truncation and suggests an alternative method
known as domain transformation.

3.1.1 Domain Transformation

Domain transformation resolves the issues associated with domain trunca-
tion by identifying the far-field boundary condition. Duffy (2009) [11] fo-
cuses on taking the semi-infinite domain and transforming it to that of a unit
interval [0,1]. He additionally introduces five transformations [11, pg.5-6],
however, the following transformation is used throughout this thesis.

o X
= x—|—4)'

y Where ¢ is the user defined free-scale factor. (3.1)

Transformation 3.1 is inserted into a one-factor PDE replacing the state vari-
able defined on the semi-infinite domain with a new state variable (y) defined
on the unit interval. The transformed PDE requires an application of Fichera
theory to identify whether new boundary conditions are required in most
cases.

3.1.2 Fichera Theory

Fichera Theory was introduced by G.Fichera in 1960 and was subsequently
developed in 1973 by Radkevic and Olejnik [4, pg.1]. Such theory finds use
in the field of partial differential equations where PDEs degenerate on the
boundary of some (2 C R") bounded space domain.

Following along the lines of Buckova et.al (2014 [4, pg.2]), Lu (2014 [17,
pg-21]) and Duffy (2009 [11, pg.7-9]) the classical introduction is via the con-
sideration of the second order elliptical equation:

n 02V "9V
LV = — 4V =f Q.
i];l “avar, e TV =S xe

Chapter 3. PDE Finite Difference Methods 11

Given the condition:

{ Y a;i8i¢;j>0, Ve IR”} =1 (3.2)

ij=1

Consider the bounded domain (), let X be a piece-wise smooth boundary
such that QU X. X splits into a hyperbolic and parabolic subset. The hyper-
bolic subset corresponds to the case in which 3.2 is equal to zero. Consider
the Fichera function:

Foy (b L 58w | aow ©

=1 9%k

Where v; is the i directional cosine component of the inner normal vector at
the boundary Q).

Considering equation 3.3, there exists three subsets of the hyperbolic bound-
ary known as the tangent flow, outflow and inflow [4, pg.2]. Consider:

20 = {f: 0|.7:(x S Z)}
Yy ={F>0/F(xeX)}.
S = {F<0|F(xex))

Radkevic and Olejnik (1973 [20, pg.18]) demonstrated in lemma 1.1.1 that at
the single points of the hyperbolic boundary, the sign of the Fichera function
does not change given smooth non-degenerate changes in the elliptic equa-
tions state variables. Therefore, in practice, Fichera theory can be applied to
some PDE for the application of appropriate boundary conditions if any are
required.

3.1.3 Finite Difference Grid (Mesh)

Upon identifying the initial condition and boundary conditions of the PDE,
discretisation takes place through the introduction of the finite difference
grid (or mesh) with equal time steps between nodes. In the generalised linear
one factor PDE case, the domain/plane of (x, t) is converted into a discretised
set of nodes:

Vit = (jh,nk), where: k= h = ? (3.4)

Such that: j =1,2,---,]; n=1,2,---,N.

The above forms an FDM mesh containing a space and time interval.

Chapter 3. PDE Finite Difference Methods 12

3.2 Crank Nicolson FDM Method

The Crank Nicolson (CN) method is prevalent in the approximation of one-
factor d/c/r equations (e.g. Black-Scholes), reasons stem from its stability
as a second-order scheme and the relative ease of implementing the method
into code.

The advantage of using the CN method becomes apparent by observing the
classic Implicit and Explicit FDMs. The Explicit method has a fundamen-
tal flaw as it must satisfy a stability condition (see Wilmott et.al (1995) [29,
pg.140-42]), otherwise, it does not converge to the exact solution (condition-
ally stable), yet the method requires no tridiagonal matrix solver to approx-
imate derivatives. The fully implicit scheme does not suffer from the insta-
bility issues of the explicit method (unconditionally stable) but requires the
solution of a tridiagonal matrix. Both methods have a truncation error of
order one, making them only first-order accurate.

The CN method is a variation on the fully implicit scheme in which the aver-
age between nodes in the space domain is taken, the method is implicit and
requires the solving of a tridiagonal system, yet is an unconditionally stable
second-order scheme.

3.2.1 Generalised Crank Nicolson

Consider the following generalised derivation of the Crank Nicolson method
for the following linear one factor PDE:

1% A% 1%
E = oc(x,t)ﬁ—l—,@(x,t)a—i—’y(x,t)V (35)

Now respectively apply the implicit and explicit methods to 3.5 in order to
obtain the following discretised PDEs (see Wilmott et.al (1995) [29, pg.139-47]
for an explanation on the explicit/implicit methods):

yrtl_yn Vr VIV yn o _yn

j i oc(x,t)(j+1 a 171) +ﬁ(x,t)(J+12h]71> +7(x,f)Vj”-
V?’H’l_vn V'H+1_2VVVI+1+V'VL+1 V'VH»l_ 'Vl;ﬂ“l

] T] = (x(x’t)< j+1 }]12 j—1) +[5(X,t) (%) _{_,),(x, t)anJrl,

The derivation of Crank Nicolson is given by the addition and subsequent
averaging of the above discretisations:

NI—=

1
V;H- :E(an—i_vjn+1>'

Therefore:

Chapter 3. PDE Finite Difference Methods 13

% <2<an+;_vjn)>

+1 +1 +1
1 f Vi =2V VI VI 2V VI
2 Dé(x,) 2

+

n n n+1 n+1
%(ﬁ(x t)<vj+1 ijl_'z_;/ﬂrl —Viih >)
7

n+1_ym n _oyn n n+1 n+1 n+1
<V] V]) _ (x t) <V]+1 2V +V —H:lszrl 2V +V >
2

Vn +Vn+l Vn-H V”+V”+1
+ Blx, t)< fi 14h1+1 >+'Y(x t)(j 2])

Leta = a(x,t); B = B(x,t) and v = y(x,t). Moving the known terms on the
right-hand side and multiplying both sides by h? and k yields:

anf—gl(_ack_kﬁkh> —|—V”+1<h2+zxk vh k) _|_V]1jr4i1< a?k_,BTkh> _

2
() (oot 82 (40)
The derivation is concluded with the generalised Crank Nicolson method:

rann_Jil + bvjn+1 + CV]Z_+11 — dvn+1 +evn+1 +fV]Z—JEl’

(3.6)

3.2.2 Crank Nicolson Black-Scholes Implementation

Considering the single factor Black-Scholes model 2.1 and the generalised
implementation of the Crank Nicolson method 3.6. The Crank Nicolson
method can be applied by considering the diffusion, convection and reaction
components of the Black-Scholes model and inserting them into «, B and y
which correspond to:

e Diffusion Term («): %(72 S2.

Chapter 3. PDE Finite Difference Methods 14

e Convection Term (B): rS.
e Reaction Term (7): —7.

Substituting the above terms into 3.6 yields the following representation:

ann_—iil + ijn—l—l + CVjTil — dV]n_—Qil _|_evjn+1 +fvjrz:ill
__ 0?S%k | rSkh __ 0?S%k _ rSkh
a=—"— +-7 d—_T_TI
(3.7)
2aq2 2 2q2 2
b:h2+05k_r}z_k o — K2 _ 5%k _ 1h’k
2 2 7 2 2 7
__ 0?S%k _ rSkh _ 02S%k | rSkh
e e f="F"+"=

Which hold under domain truncation for the following;:

e Initial Conditions:
Vet (S, T) = max(S — K,0); Vput(S, T) = max(K — S, 0).

e Boundary Conditions:
Call Option: V(0,t) =0; V(S,t) = 3K.
Put Option: V(0,t) = Ke™"; V(S,t) =0.

Where the call options far-field boundary condition is a multiple of the op-
tions strike price K (see Duffy (2018) [10, pg.647]).

3.2.3 Crank Nicolson CIR PDE Implementation

Consider the following domain transformation using 3.1 as outlined by Duffy
(2009) where the free scale factor ¢ is set equal to 1 (see: [17, pg.17-18] for a
full derivation):

_r,_y.a_l/__z,az_y___s
Y= 1’—|—1’ r= 1 _y/ or — (1 y) ’ 87’2 = 2(y 1) . (38)
Applying the chain rule to obtain the bond price for the first and second
derivatives with respect to the short rate and substituting them into 2.10
yields:

Chapter 3. PDE Finite Difference Methods 15

2
B _1,9B _br)aB

En z” o2 o B (3.9)
() (~2a- R a0 S
a-b(ys,)) ZaB - (15,)8

2
= 3oy y>3§7§ + (a1 - y>2 ~by(1—y) -y -y - (L

Given the domain transformation, the interval in which the mesh is defined
alters ([17, pg.19]) bringing to attention the existence of the denominator
(1 —y) which in consideration of the interval (0,1) causes issues as 3.9 is un-
defined at this point. A proposition is made to restrict the interval to [0,]%}
which alleviates the issue. In addition to the change of interval, Fichera the-
ory must be applied to 3.9 to obtain the required boundary conditions. Con-
sider the Fichera function in 3.3 and apply it to the transformed PDE:

F= (B - 52—y + 21 -p?))oly) (10

Where B(y,t) = (a(1 —y)* —by(1 —y) — c?y(1 — y)?).

Note that the direction cosine has two cases which need to be identified:
viy=0)=1landv(y=1)=—1.

F =(0)(=1) =0; No Boundary condition is required at y = 1.
1
F = (El — 50'2)(1)
Therefore when y = 0, the hyperbolic boundary depends on the following
tangent flow, outflow and inflow subsets:

F =0 | o?=2a NoBoundary Condition Required.
F>0 | o¢%>2a NoBoundary Condition Required.
F <0 | 0?<2a Boundary Condition Required.

The third case requires a boundary condition. Therefore by letting y = 0 in
3.9 the following first order hyperbolic equation is obtained:

0B 0B

Lu (2014) [17, pg.23] implements the Thomée scheme to approximate the
near-field boundary condition; the same method is applied to both the Crank
Nicolson and Alternating Direction Explicit methods. The initial condition
and far-field conditions of the transformed CIR PDE are the following:

Chapter 3. PDE Finite Difference Methods 16

e Initial Conditions:
B(y, T)=1.

e Far-field Boundary Condition:
B(,t) =0.

Applying the diffusion, convection and reaction terms in 3.9 to the gener-
alised Crank Nicolson derivation (3.6) yields the implementation where y is
denoted by the steps j (= 1,2,-- -,]) in the space domain:

(1 1 1
aB?fl + bB;.”r + CB]’.f1 = dB;?_l +eB + fB;7+1,

g — _CvA-yk (a(lfy)szy(lfz)*Uzy(lfy)Z)kh

4

W2k
b=h+ %Uzy(l —)%k + —ZEll—y)’

le— _tfzy(14—y)3k _ (a(l—yﬁ—by(l—z)—azy(l—wz)kh, (3.12)

q— Uzy(lgy)g’k _ (a(l—y)z—by(l—z)—azy(l—y)z)kh

7

h2k
e =h— %0’2]/(1 —)%k — z(yl——y)'

2y(1—y)3k 1—y)2—by(1—y)—c2y(1—y)2)kh
\f:tfy(ély) +(ﬂ(y)*—by(Z) oTy(1—y))kh

3.24 Thomée Scheme Crank Nicolson

Consider the following application of the Thomée scheme, paralleling with
Lu (2014, [17]):

n+l _ npn n+05 _ pn+0.5
Bilos —Blos Biji~ — B
=a

k h

Setting A = ‘}1—]‘

n+l _ pn _ % n+0.5 _ pn+05) _
Bj+0.5 j+0.5 h <Bj+1 Bj) = 0.

+1 +1 _ +1 +1
BIS + Bt — By — BY = A(BIf + By — BT - B).

Rearranging such that the known values are on the right-hand side gives:

B]’.’“(l YA+ 37:11(1 —A) =B} (1—A)+ B} (1+A), (3.13)

Chapter 3. PDE Finite Difference Methods

17

The application into the Crank Nicolson method can be represented by the
following where one additional unknown is included in the system of equa-

tions.

Ay By €y
1

g |a—-aBr + (+08
HM] ﬂ
1
B! F,
B Fpy
Bt F

FIGURE 3.1: Implementation of the Thomée Scheme into the
Crank Nicolson method.

3.3 Alternating Direction Explicit

Alternating Direction Explicit (ADE) is a relatively unknown numerical method
tirst applied to financial computation for non-linear and linear PDEs in 2009
by D. Duffy [11, pg.9-15]. The literature over the past decade has grown,
leading to many variations of the ADE scheme. Variations are based on a
modification of the difference quotient used to approximate the convection

term in d/c/r PDEs.

The method consists of an upward and downward sweep (explicit in nature)
that individually compute the solution at a given node inside a computa-
tional grid. The solution is subsequently averaged out resulting in an ADE
approximation of the node. Buckova et.al (2010) [13, pg.311] provides an
excellent visual aid to the function of the upward and downward sweep:

BC for Smax

(I AA XS AR R NN N
I A2 Z SRS RS RN 2
I A2 XSS R SRR]
I AAXE SRR AR NN N)

[
L]
L
L]
L]

payoff

BC for S=0

time

Upward sweep.

BC for Smax

seseOOOO RO RROOY

pavoff

s BNORIROIBOROY
s RORRIRRIRRRIOIRYS
¢ 00RO IREOOROOS

BC for S=0 t=T

time

Downward sweep.

FIGURE 3.2: Buckovd’s ADE upward and downward sweep
figure [5, pg.311]

Concerning linear one factor PDEs, it is proven by Ehrhardt et. al (2015) in [5,
pg.314] that the ADE scheme was unconditionally stable. Additionally, this

Chapter 3. PDE Finite Difference Methods 18

thesis focuses on the Barakat and Clark ADE variant given by Duffy (2018)
[10, pg.672] which simultaneously performs a backward and forward sweep.
The advantage lies with the truncation error of O[kz, hz] which comes about
from the sweeping cancellation effect (see Buckova et.al (2015) [5, pg.323])
making the ADE variant a competitor to that of the Crank Nicolson method.

3.3.1 Generalised Alternating Direction Explicit
The proceeding difference quotients give the time derivative, diffusion term
and reaction terms of 3.5:

Upwind Difference Quotients (j =1,---,] — 1):

n+1 n+1 n+1
au um-uy ey _ Ui ui-urm AU
2 2

t k 4 X

. U = uﬂ+1
7] M
Downwind Difference Quotients (j =] —1,--- ,1):

n+1 n+1 n+1
aD D™D ?2p _ Djyi —Di —Di+DiL,

of kK oz T h? ¢

D = D1,
]

A range of modified convection difference quotients can be applied within
the derivation, however, for simplicity the classical Towler and Yang (TY)
difference quotients (Towler and Yang, 1978) [24, pg.46] are implemented
(for other difference quotients the reader is referred to: Buckova (2015) [5,
pg.312-313] and Lu (2014) [17, pg.12-13]):

Upwind TY Quotients, Downwind TY Quotients
+1 +1
au _ u;]Jrl_u]"q—l . JdD __ D;'q+1 _D}qfl
ox 2h / ox 2h)

The upwind difference quotients are substituted into 3.5 to yield:

urt—ur ur, —ur—urturt! ur, —urt!
L = (i,) L B) ey (U

In the downwind difference case:

Dt _pr D! —D!—DI"14- D! D’ —D!
j L = (x,)L h2] j—1 —|—,B(x,t)%+’y(x,t)D]’?“,

Chapter 3. PDE Finite Difference Methods 19

Taking both cases (dropping notation), multiplying by the time step k and
rearranging such that the known values are on the right-hand side gives:

Ufjf(—%—l—ﬁ—K)-l—Uf“(l—i-g—’yK) =u’ﬂ<1 “k)+ 7+1(“K+ﬁ—K

2 2h h2 I\t R2 W2 " 2n

aK wk aK BK

DR (=2 =)+ B (1 k) =0/ (-)+ D -

Rearranging the above terms:

urt (1455 k) = wp (1=) +ura (5 + B s ur (55 -),

01+ =) =0y (1=) + 0 (5 =) + 21 (5 +)

The ADE approximation is thus obtained by averaging out the upwind and
downwind equations:

1
n+l1 _ ~ n+1 n+1
Vi = Z(Uj + D])

3.3.2 B&C ADE Black-Scholes Implementation

The implementation of ADE into Black-Scholes PDE (2.1) follows the same
process as the Crank Nicolson implementation. The diffusion, convection
and reaction terms are substituted into the upwind and downwind equa-
tions, then subsequently averaged resulting in the final solution. For clarity
the upwind and downwind equations containing the Black-Scholes d/c/r
terms are as follows:

n+l _ 1 n+1(o2S% _ rSk n(1 _ 02S% n oS’k | rSk
U= 1+ 257k 11K (uf—l < 21 2h> +4 (1 oz) TUL (T T3
2h

- 262
14+ 5 1K

n+l _ 1 n+1(o282k | rSk n o252k n o28%k Sk

).
).

).

Chapter 3. PDE Finite Difference Methods 20

3.3.3 B&C ADE CIR PDE Implementation

Inputting the terms in 3.9 from the transformed PDE into the ADE generali-
sation results in the following upwind and downwind equations:

Ut — 1 n+1(?Ky(-y)® _ (a(=y)?—e’y(1—y)?—by(1-y))K
j 1+02Ky(127y)3+1yil< j—1 2h? 2h
2h -y
2 3 2 3 2 2 2
n(+ _ o°Ky(1-y) n (o Ky(l-y) (a(1-y)*—c?y(1-y)*—by(1-y))K
+ u (1 /Q) + ujH(Oy . .
el 1 n+1(o282 , (a(1—y)*—c?y(1—y)*~by(1—y))K
D] - 1+U Ky(l—y)e’+ yK (Dj+1 < 2h2 + 2h
212 1-y

n o?Ky(1—y)3 n [02Ky(1—y)3 a(1—y)2—c2y(1—y)2—by(1—y))K
b+ Dp(1- PR | pr (PROP 0o o=)))

3.3.4 Thomée Scheme ADE

Using 3.13, the Thomée scheme is implemented into the ADE method by
applying the ADE derivation to the generalised PDE in 3.5 for a bond price
B. The result is the following where the known terms have been moved to
the right-hand side:

(-)+ m (- en) - D -G 5)

The above form alongside 3.13 form a 2 x 2 system which is solved to obtain
the bond prices at j = 0 and j = 1. The bond price Bj ! is then used as an
approximation to the near-field boundary condition during the ADE iterative
process.

3.4 Method of Lines

The Method Of Lines (MOL) scheme is a numerical method that involves the
algebraic approximation of an initial value boundary problem. The gener-
alised d/c/r PDE (3.5) consists of two independent variables x and ¢, and
the method takes the space variable and converts the PDE to that of a system
of ordinary differential equations (ODEs), in which there exists only one in-
dependent variable. Schiesser et al. (2009) [21, pg.6] defines the method as
a replacement of the spatial derivatives with algebraic approximations such
that PDEs independent variable remains.

Chapter 3. PDE Finite Difference Methods 21

3.4.1 Generalised Method of Lines

The MOL scheme, when applied to 3.5 results in a general framework in
which the d/c/r equations throughout this thesis, can be implemented with
ease. The standard procedure begins by replacing the derivatives in the spa-
tial domain with the following central-difference quotients:

WV V(x+h) —V(x—h)

9v _ Vn+1 - Vn—l
ox 2h

+0(h?) = P —

n=1,---,N.

PV V(x+h)—2V(x)+V(x—h)
ox2 h2

Vn+1 — 2V, + Vn—l

+O(h*) = 2

Note that there is only one independent variable such that the central differ-
ence quotient variables no longer contain a spatial subscript (j). Moreover,
step size h is now defined as the space between each ODE line discretisation.

Substituting the above into the generalised PDE yields the following:

aVn _ Vn+1 —2Vy + Vn—l Vn+1 — Vn—l
5 = el (2)+ Bl (FE))V
Rearranging yields:

ot h2

(3.14)

h? 2h h?
Equation 3.14 corresponds to a system of ODEs that require solving via the
use of an integration scheme. The benefit of this method is the existence of
many open-source ODE integration solvers that make coding the Method
Of Lines scheme easier than other methods such as ADE. The above sys-
tem can be solved using explicit numerical integration, such as the Explicit
Euler method. However, this suffers from instability caused by the CFL-
number rising above some critical value (see Schiesser and Griffiths (2009)
[21, pg.9] for more details) and has a local truncation error of O(h?). This is
often known as the simplest Runge-Kutta method and is not used within this
thesis. Instead, the widely known ODE solver, known as the Runge-Kutta
Dormand-Prince (RKDP) method is implemented.

Runge Kutta Dormand-Prince ODE Method

Unlike the explicit Euler method, the RKDP method is a Runge-Kutta solver
and was developed in 1980 by Dormand and Prince [9]. The method com-
prises of seven stages and uses six-stage functions to generate a fifth and
fourth-order solution (Dormand and Prince (1980) [9, pg.23]). It is known
to have a truncation error of order five, which in comparison to lower-order
Runge-Kutta schemes produce a significant improvement in approximating
ODE solution. This was confirmed in Kimura’s 2009 paper [16, pg.4,6].

_ Vn1<a(x,t) _ ﬁ(x,t)) " (MJr'y(x,t)) +Vn+1<a(x’t) N B(x,t)

Chapter 3. PDE Finite Difference Methods 22

Briefly consider the standard fourth order Runge-Kutta method (see Stoer
and Bulirsch (1993) [23, pg.438]):

Vaqa(th) = + £ (k1 + 2k + 2k3 + ky),

Where: = f(t, V),

kz = f(t+0.5h, V + 0.5hk;),
(
(

V(£ h) h > 0.

ks = f(t+0.5h, V + 0.5hk,),
ks = f(t+h,V + hks).

The above was generalised to higher orders [9, pg.19] and gave rise to the
following generalisation:

Where: ks = f(tn + csh, Vi 4+ h(as ki + aspky + - - - + a5 5_1ks_1)),
Where: a;i is the Runge-Kutta Matrix.

s is the number of stages (k).
{bi}5_1, {ci};_, are the stage weight coefficients.

Such that: j € [1,s],

Dormand and Prince (1980) presented their method via the coefficient table:
Using the Runge-Kutta generalisation and figure 3.3, the difference between

j<i<s.

3 3jj b b;
0 35 5179
384 57600

1 1

5 5 0 i

S 3 9 500 7571

10 40 40 1113 16695

4 44 _56 32 125 393

5 45 15 9 192 640"

8 19372 _ 25360 64448 212 _ 2187 92097

9 6561 2187 6561 729 6784 339200

1 9017 355 46732 49 _ 5103 11 187
3168 33 5247 176 18656 84 2100

1 35 500 125 2187 11 | g 1
384 1113 192 6784 84 40

FIGURE 3.3: Dormand-Prince (1980) Method Coefficient Table

[9, pg.23]

the fourth and fifth order Runge-Kutta equations are taken. The result is then
used to obtain an optimised step h which is subsequently used in the next
stage calculation (see Kimura (2009) [16, pg.1-2] for an in-depth example).

Chapter 3. PDE Finite Difference Methods 23

3.4.2 MOL Black-Scholes Implementation

Substituting the Black-Scholes d/c/r terms into equation 3.14 yields the fol-
lowing;:

v, 262 S —g2s? 252 S
e Vn—l(%? - 57) +Vn<2—2 —T> +Vn+1(az? + 57)

3.4.3 MOL CIR PDE Implementation

Consider the diffusion, convection and reaction terms of the domain trans-
formed CIR zero-coupon bond price PDE (3.9) and substitute into the gener-
alised Method Of Lines equation.

W _ c?y(1—y)® a(l—y)*—by(1—y)—c?y(1—y)*
at = Vﬂ—1< 2nz 2h >+

—oty(1-y)® o?y(1-y)* | a(l—y)*~by(1-y)o’y(1-y)*
VJ%—%) +Vn+l< vy ey byl >

24

4 Sensitivity Approximation
Methods

The introduction of the numerical methods in chapter 3 has the primary use
of approximating bond and option prices. However, this thesis is concerned
with the approximation of sensitivities using the results obtained from the
prior numerical methods. Within this section, each sensitivity approximation
method is introduced and expanded on concerning the Black-Scholes PDE
(2.1) and the CIR zero-coupon pricing PDE (3.9).

4.1 Divided Difference Method

This thesis has partially covered Divided Differences; however, in this case,
the central, forward and backward difference schemes will be implemented
into sensitivity calculations. The foundation of Divided Difference lies with
Taylor series expansion and formation of difference quotients used to ap-
proximate derivatives. The Taylor series gives rise to the truncation errors
that reflect the finite components of the series used in the calculation.

First consider a second-order continuous function denoted f defined on an
interval with step size h > 0. The forward and backward differences are
given by:

f/(x) — f(x"_h})l —f(X) +O(h); f’(x) — f(X) _ilf(x_h) —|—O(h)

These are first order approximations of the derivative (see big’O’notation)
and only require two points for approximation at the cost of a higher discrep-
ancy between the exact and approximated value. The centralised difference
is constructed from the above quotients and is of the form:

f’(x) _ f(x +h)2_hf(x — h) +O(h2).

Which is a second order approximation and will be used as the primary sen-
sitivity approximation. The final difference quotient is a second order ap-
proximation of the second derivative given by:

iy = FEEN =AW+ F6=R) o0

Chapter 4. Sensitivity Approximation Methods 25

The application of the Divided Difference method to the approximation of
sensitivities requires a vector V containing | prices of a financial derivative
(or instrument). The difference quotients can then be represented on the fol-
lowing interval (j = 1,---,] — 1) in which the vector is defined. However
this interval shifts when considering the first-order difference such as the for-
ward difference (j = 0,--- ,] — 1) or backward difference (j =1,--- ,]).

The inherent disadvantage of such method reveals that it suffers from a can-
cellation effect. If the step size (h > 0) is set too low the difference between
f(x+h) and f(x — h) becomes small enough that it reaches machine preci-
sion resulting in a cancellation effect. This issue is common with difference
quotients, and this leads to the question of what step size is required for ac-
curate computation.

Regarding the approximation of option price sensitivities. Each of the first-
order sensitivities denoted V' are approximated using the central difference
quotient at time step 7 along the j* interval:
n _ n
V/ _ ‘/jJrl ‘/]’71

5 (4.1)

The exception is Theta (2.5) (or time related sensitivities) which utilises the
backward difference as time is continuous in a single direction and will not
change:

Vi,
0= %, Where k is the time step. 4.2)
Finally, Gamma uses the second derivative approximation given by the fol-
lowing;:
n n n
[Vig, =2V + Vi,
= 2 ,

j=1<j<]-1 (43)

Additionally, the sensitivities associated with the price of a zero-coupon bond
are identical to that of the option price sensitivities. Therefore, the implemen-
tation of the Divided Difference into the sensitivity approximations is trivial.

4.2 Cubic Spline Interpolation

Cubic Spline is an interpolatory method used to fit a set of numerical points
with a series of unique cubic polynomials, known as cubic splines, between
each data point. The splines depend on a set of coefficients named moments
(M) that adjust the curve of the spline near its endpoints to produce a smooth
continuous curve that fits the numerical data. The advantage of this method
lies with its avoidance of over-fitting and its ability to create a smooth solu-
tion, unlike standard piece-wise interpolation. Therefore the severe flaw of
interpolatory methods known as Runge’s Phenomenon (as a result of over-
titting) is avoided.

Chapter 4. Sensitivity Approximation Methods 26

A spline is a composite function defined on some interval [A, B] where: A =
xp < x1 < --- < x; = B, made of n low order polynomials (in this case 3rd

order) for :
)

SO(X), X0 S X S X1,

S(x) = .51'71(36)/ xio1 < x < x; (4.4)

\Sn—l(x)/ Xp—1 < X < X

Subject to the following continuity constraint in that each consecutive poly-
nomial must join at each interval ¢;:

Si_1(x) =Si(x), for: i=1,2,---,n—1

In addition to the smoothness constraint in which for some degree k the
derivative of each low order polynomial must be the same at each interval
t,':

Sk (x) =SK(x), for: i=1,2,---,n—1

Applying a cubic spline to the above (4.4) yields the following:

(So(x) = agx3 + box? + cox + do, x0 < x < xq,

S(x) = { Si—1(x) = a;_1x° + bi_1x* + ¢;qx +dj_y, xi—1 < x < x;

Sn-1(x),= Ay 1X° 4+ by X% + cy1x +dp1 Xy1 < x < Xy

(4.5)
Given the following constraints where the spline is a second order continu-
ous function:

\

Si-1(x) = Si(x),
S(x) =4S/ 4 (x) =Si(x)
SiLq(x) = 7 (x).
There exists a set of cubic spline variations, however, for the purpose of this
thesis, the natural cubic spline will be used in which the following holds:

S"(x0) = S"(xy) = 0.

Proofs from Stoer and Bulirsch (1993) [23, pg.99] can be observed that result
in the coefficient expressions of 4,b,c and d leading to the following cubic
spline equation, where y; € Rfori =0,1,--- ,n —1:

. — hi , , hit1 ‘
Si(y,x) = <m>Mz—1 +2M; + (m)MzH
_ 6 (3/i+1 —Vi Yi— }/H)
hiyi+hi N\ hig hi

Chapter 4. Sensitivity Approximation Methods 27

Letb; = %(yi+l - yi) and b; = h%(y,- — yi,l) to obtain:

6(bit1 — b;)

=d;.
hiy1+h; 1

, _ hi , , hit1 o
Si(y,x) = (m)le +2M; + (m)MlH =

Let hiji— =V h:i1+—1hi = ¢ and apply the Natural Cubic spline to obtain the
following n X n matrix, giving rise to the following:

(2 0 T [Mp] [0]
v 2 & M dq
vy . e =6
Cn-1 dn1

i 0 2] [Mn] | 0]

The above system is solved using a tridiagonal matrix solver to obtain the
moments (M) used to adjust the spline. Upon using moment solving meth-
ods such as the Thomas algorithm, the calculated moments are then imple-
mented into the following spline functions (a derivation of the formulae can
be found in Stoer and Bulirsch’s (1993) paper [23, pp. 97-100]):

x;)3

L i—x)3 —
S(yx) = M=+ M G

1

+ A](x — xl-) + Bi-

i+1—y; h;
Where: A] = % + %(Mj—&-l — M]),

1
_ i
Bj =y — Mj=e
Where the first and second derivatives used to calculate sensitivities is given

by:

(xj1-%)° =P\ | iy (M= M))
S/(]/,x) = _M].<]2+hl]-+1 >+Mj+l< Zhj+]1 >+];jlﬂ jo_ B+t]6+1 17

"(y,x) = My(5) + My (52).

The above cubic spline derivatives are used for calculating the option and
bond sensitivities by supplying a vector of prices and defining the interval in
which the cubic spline algorithm can be applied.

Chapter 4. Sensitivity Approximation Methods 28

4.3 Complex Step Method

The Complex Step Method (CSM) is a relatively unknown way of approx-
imating sensitivities of analytical functions. In recent years, the benefits of
such a method have become known and implemented in fields such as Bi-
ology and Geophysical analysis. In chapter 4.1, the Divided Difference was
commented on in regards to its main disadvantage: the cancellation effect,
where a function evaluated at two consecutive points along an interval is
subtracted at an extremely short time step h. The resulting differences be-
come smaller than machine precision resulting in a subsequent cancellation.
Squire and Trapp (1998) [22, pg.110-111] discussed this effect and showed
that when a function is approximated and is analytical, the approximation
can be carried out using a complex number where the imaginary component
is evaluated to produce an approximation. The result is an approximation
with no subtraction operator, in turn removing any cancellation effect for
smaller step sizes. This was further supported through the Taylor series ex-
pansion about a point &g of some arbitrary function f:

h? ih3
flao +ih) = f(ao) + il f'(wo) — 57" (w0) — 5 f" (wo) + -+

Taking the imaginary part or the real part then rearranging leads to the re-
spective derivative approximations:

Im(f (a0 + ih)

f(lxo) — p —|—O(h2); f”(‘XO) — Z(f(lXo) — RZ(f(“O + Zh)) —|—O(h2).

The second derivative provides a limitation of the method in that it is real, so
no imaginary parts are included. However, Abreu (2013) in [1] generalised
the CSM and introduced a complex step where ih = h 4 iv. Assuming that if
v = /3h, the derivative approximation becomes a 4th order approximation
and contains only imaginary components:

f’(x) _ Im(f(oc+h+iv)2)v+lm(f(a+iv))+O<hlvz)

f//(x) _ Im(f(oc—i—h—i—iv;l)v—lm(f(oc—&—iv))+O(hlvz)

The above method can be applied to the analytical Black-Scholes and CIR
zero-coupon bond equations to calculate sensitivities as an alternative to cal-
culating the closed form solution. Due to the simplicity of the Black-Scholes
closed form this may not be a better alternative; yet the large CIR closed form
sensitivity equations in Appendix B would make the CSM a viable alterna-
tive.

Chapter 4. Sensitivity Approximation Methods 29

4.4 Forward Automatic Differentiation

Forward Automatic Differentiation (AD) is another method applied to this
thesis. Similar to Complex-Step Method, AD is relatively new in comparison
to finite difference methods, with the ability to calculate high order deriva-
tives and gradients without a large computational overhead. Unlike finite
difference methods, AD does not suffer from subtractive cancellation and in-
stability issues when dealing with differencing (similar to the complex step
method).

However, unlike FDM, the method suffers significantly from its difficulty to
implement into coding languages such as C++ or MATLAB. In reference to
C++, AD was only recently implemented through the use of "Template Meta-
programming” which in short compiles source code via templates at com-
pile time (see Meyers (2005) [18, pg.233]). The issue is that template meta-
programming is complicated and hard to implement, resulting in relatively
low adoption of the method to that of the classical methods. Despite the
present issues of the method, there exists a range of C++ Automatic Differ-
entiation libraries that reduce the difficulty of code implementation.

Byrne and Greenwell (2017) [6] give an intuitive explanation of how AD dif-
fers from finite-difference and symbolic differentiation. They explain that
"AD uses the same programmatic logic dictated by code except it propagates
along the gradient information via standard properties such as the chain
rule". Template meta-programming is applied explicitly for this action of
propagating gradients.

Forward Automatic Differentiation relates to the forward propagation of deriva-
tive information, while Backwards Automatic Differentiation is concerning
the backwards propagation of derivatives. The concept is intuitive when con-
sidering a simple multi-variable function that requires differentiation. The
following function will be separated into its elementary/primitive functions
and then into its subsequent input variables. Consider the following:

< Add: w; = ws + w6>
Multiple: w5 = wyw,

tan : wy = tan(w;)

o Wi
Divide wg = —
W2

sin : wy = sin(w,)

FIGURE 4.1: Automatic Differentiation Simplistic Example

Chapter 4. Sensitivity Approximation Methods 30

f(x,y) = tan(x)sin(y) + ;

Figure 4.1 is a visual representation of simple Automatic Differentiation ap-
plied to the above function. The derivative of f(x,y) with respect to x is
calculated using the following procedure:

_ dw
Let Dw = dx’

Dwy = Dx=1,

DZUZ = Dy =0,

Dws = Dtan(w;) = sec?(w;)Dw; = sec?(wy),

Dws = Dsin(w;) = cos(wy)Dwy =0,

Dws = D(wzwy) = wzDwy + wyDw; = wysec?(wy),
Dws = D(%) = mlmmbn _ 1

Dw,; = D(ZU5 + w6) = Dws + Dwg = wy SeCZ(wl) + wiz

Substituting wy, w2 and w; into Dwy yields the derivative:

d . b 1
% (x,y) = sin(y) sec”(x) + Y

The advantage of using AD is that for a function f(x) one may wish to calcu-
late the value of the function and its derivative at a specific point. AD starts
to share similarities with the Complex-Step Method but with dual numbers
instead of complex numbers. By using dual numbers, AD calculates both
the value of some function f() and f’() within the same calculation (hence
Automatic Differentiation).

4.4.1 Dual Numbers

As a brief introduction, first consider a complex number where i is an imag-
inary number and satisfies the following property: i> = —1. Dual numbers
are extremely similar to complex numbers with the caveat that the letter ep-
silon is used (€) and satisfies the following property: €2 = 0. In both dual
and complex space (note: dual numbers are an extension of the real number
space), elementary operations will result in a real and dual number compo-
nent. Consider the second example:

f(x,v) = xy +sin(x), Find £(2,2) and f'(2,2) :
Introduce the following dual numbers: x = (2+¢€7) and y = (2 + €3).

f(24+e€1,24+€) = 2+€)2+e)+sin(2+¢€),
44 2¢1+2e+0+sin(2 + €1),
4 4 2¢1 + 2€3 +sin(2) + €1 cos(2),

Chapter 4. Sensitivity Approximation Methods 31

= (4+5sin(2)) + €1(2+ cos(2)) + 2e.

The above equation corresponds to f(2,2), f1(2,2) and f;(2,2) :

£(2,2) =4+sin(2), fi2,2) =2+cos(2), f(2,2)=2.

4.5 Continuous Sensitivity Equation (CSE)

This thesis hopes to introduce and test a method of calculating sensitivities
via the continuous sensitivity equation using the literature from previous sec-
tions. This section will introduce a variety of sensitivity equations (alongside
their derivations) for both the Black-Scholes PDE and the CIR zero-coupon
bond PDE.

Before any derivations take place, the CSE method varies to that of the pre-
vious methods as it works in a ‘backward’ sense. Previous methods first re-
quire a bond pricing numerical method such as the Crank Nicolson method
(see Chapter 3.2.1); from there a secondary method approximates the sen-
sitivity. The CSE is a PDE of an option’s sensitivity and only requires one
method such as those described in chapter 3 to approximate the respective
sensitivity.

The main disadvantage is that the resulting PDEs can be challenging to code
regarding its boundary conditions and initial conditions. In addition, inho-
mogeneous terms (source terms) may exist which require the computation of
the financial instrument prices that must be calculated first before approxi-
mating the CSE. This could potentially increase computational time, reduce
the accuracy of the sensitivity approximation and introduce multiple solu-
tions. The remaining section will cover the CSEs associated with the CIR
zero-coupon bond pricing PDE and the Black-Scholes PDE.

Consider the general d/c/r partial differential equation:

X 2V (x X
avét,) _ o (x, t)%xz’t) + B(x, t)avgx, H_ Y(x,)V (x,t).

First take the derivative with respect to some sensitivity x of the above PDE:

X 2V (x X
i(av(,t)) _ i([x(x,t)a‘g—('t)—i—ﬁ(&t)ava(x,t) —|—'y(x,t)V(x,t)>.

ox ot ox x2

Dropping the variable notation from the d /c/r components and applying the
chain rule:

0’V oad’V 9V a/sav 0’V dy oV

gtox oxon? Yo Tarax TPa TV oy

Chapter 4. Sensitivity Approximation Methods 32

Introduce the following substitution 2 a > = X.

0X dadX 9°X 0B

|

0X oy
g—ag—f—lxw £X+’B$+_V+,YX'

ox
Rearranging results in the CSE for some sensitivity x of the general d/c/r
equation.

NoaTE ()R (e D T an

It can be immediately observed that differentiating the generalised PDE by x
leads to a CSE containing a source term. Despite this the equation remains
in the form of the d/c/r equation when the source term is taken to the right
hand-side of the equality.

The following set of CSE equations will contain all derivations within Ap-
pendix C. Additionally, the CSEs associated with Greek Theta and time un-
til expiry will be missing from the following derivations due to its abstract
nature and difficulty in coding since time is, by definition, an independent
variable. However, this could be a topic for further research.

4.5.1 Black-Scholes Continuous Sensitivity Equations

The famous Black-Scholes PDE is given again:

W 1 ,,RV oV .
= =30 S 32 +rS— 53 —rV, Where: V = V (S, t). (4.8)

Delta CSE

Following the order of chapter 2.2 the Delta sensitivity is obtained by differ-
entiating 4.8 with respect to the underlying S to obtain:

+ (o* +)Sa—A (4.9)

A _ 1 ,,0A
3s

ot 2 952
The CSE requires its own set of boundary and initial conditions. By definition
the Delta of a call option has a maximum value of 100% or 1.0 and a minimum

value of 0. Put options are the opposite and range from -1.0 to 0. With this
information the boundary conditions are set:

Acall(oft) =0, Acall(smaxft) =1L

Concerning the initial condition, the option payoff of the Black-Scholes PDE
is differentiated with respect to S, resulting in the following Heaviside step

Chapter 4. Sensitivity Approximation Methods 33

function. Consider the call option case:

S—-K, if S > K.

V. (S,T) =
catt (S, T) {o, if S < K.

1, if S > K.

Where K is the strike price of the option.

Since the CSE 4.9 contains no source terms and has simple boundary condi-
tions, it is relatively straight forward to obtain and requires little mathemati-
cal derivation.

Gamma CSE

As previously stated, Gamma is the derivative of Delta. Therefore, the CSE
is derived from once again differentiating Delta by the underlying yielding
the following CSE (see Appendix C):

2
o _1,00T

5 =50 S5+ (2078 + rs)a—F + (0® 4+ 1)T. (4.10)

0S

The boundary conditions of Gamma are the same for both (longed) call and
put options in that Gamma will remain positive. It describes the rate of
change of Delta, which is commonly given in percentages. Based on this,
the boundary conditions are as follows:

Acall(of t) =0, Acall(smax, t) =1L

The initial condition is obtained by taking the derivative of the Heaviside
function with respect to the underlying. The resulting derivative is the well
known Dirac delta function which requires approximation (see Walden (1999)

[25]).

However, for this thesis, a somewhat crude analytical approximation of the
function is introduced beginning with the following logistic function: a smooth
approximation of the Heaviside function:

1

Chapter 4. Sensitivity Approximation Methods 34

Where A is the steepness of the logistical curve and K is the options strike
price. Differentiating the above equation with respect to (S — K) yields:

OH(S — K) 2\~ M5=K)

O(ST) =G g =96-K = I T

The potential downside of the above initial condition is that it is a derivative
of an approximation. This may reduce the computational accuracy of the
results obtained when approximating sensitivities and will be commented
on within the code implementation and results in chapters 5-6.

Vega CSE

Vega is obtained by differentiating the Black-Scholes PDE with respect to its
volatility parameter (0):

oV 1 ,,0%V oV ,02V

- == — == — = 4.11
5 Z(TSaSZ—H'SaS rVY+oS§ 352 (4.11)
The issues associated with the Vega CSE stem from its initial condition and
boundary conditions. Unlike the previous CSEs, volatility is not a parameter
used within the payoff function of the Black-Scholes PDE. Therefore differ-
entiating it with respect to ¢ results in:

V(S,T) =0.

Moreover, Vega is always positive for put and call options making the near-
tield boundary condition equal to zero. Moreover, the far-field boundary
condition can be deduced either through a truncated or transformed domain.
In a non-general sense, a similar option would be analysed, and the highest
recorded Vega would be taken and multiplied by some user-defined constant
to obtain the far-field boundary. However, domain transformation would be
a suitable solution for this issue.

Appendix C.3 contains the derivation for both the domain transformed Black-
Scholes PDE and subsequent domain transformations of the Vega and Rho
CSE. Consider the transformed Vega CSE:

W _1o0q_ 28 g — e\ Y
5 — 0 v (1-y) ay2+(ry(1 y)—oy (1 y))ay Vo (412)
o’V oV
+ oy (1 — y)? = — 20 (1 — y) —.
yA-yigz 20y (1-y)5,

The transformation of the Vega CSE has bounded the spatial interval to being
that of a unit interval, removing the issue of choosing a far-field boundary via
domain truncation. Setting y = 0 or 1 in the transformed Vega CSE yields the

Chapter 4. Sensitivity Approximation Methods 35

following ordinary differential equation:

a—v—l—rV:O—H):Ce”.
ot

Given that Vega decreases when the option approaches expiry at time T the
issue consists of Vega not becoming zero at expiry, but under the generalised
case it may be considered logical as Vega is always positive. The initial con-
dition is therefore set to 0 at expiry, resulting in the following boundary con-
ditions:

V(0,t) =0, V(1,t) =0.

In addition it is worth noting that even under domain transformation the
initial condition of the Vega CSE remains the same.

Rho CSE

Option Greek Rho follows the same case as the Vega CSE. The standard
Black-Scholes PDE is differentiated with respect to its interest rate (r) result-
ing in the following CSE equation:

dp 1 5.0 9 oV

a—’; - 502528—5‘; +rs£ —rp+ 552 V.
Rho, however, is not always positive. For European put options, Rho is neg-
ative, and for European call options, Rho is always positive. For this reason,
the boundary conditions will change depending on the type of option; yet
suffer from the question of, what are the boundary conditions of the CSE. In
the case of the call option (vice-versa), Rho will steadily decrease as the op-
tion approaches expiry. Therefore the near-field boundary can be set to 0, as
for the call option case Rho must be positive. The far-field boundary can be
obtained by intuition in a non-general case, but for the generalised case, the
spatial domain of the CSE will be transformed into that of a unit interval.

Consider the transformed Rho CSE:

8p_122_282_p N 220 N\ _ a9
ot — 20 vy et (1 —y) - P01 y))ay = VHy-yg,
Setting the transformed variable y to zero or one yields:

dp _ _C-Vt

S te=-V, = p= e (4.13)

Assuming p is 0 at expiry yields the following near/far field boundary con-
ditions under domain transformation:
Vit

Pcalt/put(0,t) = Ocant/put (1, 1) = Tt Where V is the bond price.

Chapter 4. Sensitivity Approximation Methods 36

The initial condition is thus given by: p(y, T) = 0. The issue of what initial
condition is required is a possible topic of research. Although 0 has been
used in both the cases of the Rho and Vega CSEs, the value of Rho and Vega
may never reach zero as maturity approaches. Chapter 6 uses the Rho CSE to
investigate the effect of different Rho values at expiry under the assumption
that Rho is decreasing.

4.5.2 Cox-Ingersoll-Ross Continuous Sensitivity Equations

As expanded in previous chapters, the CIR zero-coupon bond pricing PDE is
given under a transformed domain. However, for consistency, the standard
CIR PDE is given by:

0B 1 , 9°B B
g—i(f rw‘i‘(ﬂ—br)g—rB.

Each CSE will be presented using the above CIR PDE and then subsequently
undergo domain transformation (full derivations of the CSEs are given in
Appendix C.2). Lastly, a section is dedicated to the issues around the CSE
boundary conditions and initial conditions.

Duration CSE

Similar to the Greek Delta CSE, the Duration CSE is obtained by differen-
tiating the CIR PDE with its dependent variable, i.e. the interest rate. The
following CSE is obtained:

oD 1 ,D (1, oD
S =57y + (30 Ha—br) 5o~ (r+ DD B (414

Applying domain transformation to the CSE yields:

D 1 o 39 (L No2ha B N 29D
or —27v1-Y) 8y2+<<2 y)” +a 1—y>(1 Wy @19

Convexity CSE

Differentiating C.2 by the interest rate results in the following CSE for the
convexity sensitivity:

ac 1,8C ac 9B

Chapter 4. Sensitivity Approximation Methods 37

Consider the domain transformation identities:

aC ,dC 9%C 53C

T T B L gy
or Y ay’ orz Y N Y

oy’
Applying the transformations to the Convexity CSE yields:

¢ 1 50%C ’ 3 2 aC
= = 57 y(1-y)’ oz Ty +al =y —by(-y)5 (*16)
0B
—)22
— (20 +) —201-y75
Speed of Adjustment CSE

The CSE associated to the Speed of Adjustment sensitivity (b/x) is given by
the following:

oK _ 1, 32K)) K
= =50y -y 5z Ta-y) —by(1-y) —o*y(1-y)*)5y @17)
(Y 98
(1— > y(1-)ay'
Volatility CSE

Differentiating the CIR zero-coupon bond pricing PDE by its volatility and
applying domain transformation yields the following CSE:

= =50 y(1-y) a—y2+(ﬂ(1—y) —by(l—-y) —cy(l—-y))@ (4.18)

;9°B

(Y Y —oye(1— 228 _ 9B
(1_)V —2y0(1-y) 5y TV G

Yy

4.5.3 Boundary Conditions: Further Research Opportunity?

In this section, Fichera theory is applied to the CSEs introduced in chapter
4.5.2 with a discussion on possible implementations into code and solutions
to the questions posed in this section.

Duration CSE

For reference, the Fichera function is:

l " du,
F:E(ﬁi—kzlwl;{k>vi, | 77—>IR
i= =

Chapter 4. Sensitivity Approximation Methods 38

The Fichera function requires the diffusion and convection terms in 4.15 to
yield:

Fw) = ((5-9)20 =07+ (0= (725)) (1 =97 = 3670 =P + 321 =5)oly),

Consider the case at the near-field boundary where v(0) = 1.
F(0) = a.
Therefore:

F(0) >0, a>0. No boundary conditions required.
F(0) <0, a < 0. Boundary conditions required.

Setting y = 0 in 4.15 yields the near-field condition:

88_1:: <%02+a>%—1;—bD—B.

Convexity CSE

Substituting the diffusion and convection terms of 4.16 into the Fichera func-
tion yields:

F(0) = (21— y) +a(1 —yP ~ by(1 —y) — 20°(1~y)* + 20%y(1 — y))o(y),

_ (Y2 — 2 31—)2 —by(1—
= (37— + (a+3y) A=y = by(1 = y))o(v).
Consider the near-field boundary case where: v(0) = 1.

F(0) = (%az ta).

The following cases are obtained:

F(0) >0, 0?> —2a. noboundary conditions required.
F(0) <0, 0> < —2a. boundary conditions required.

Chapter 4. Sensitivity Approximation Methods 39

Concerning the far-field boundary i.e. when v(1) = —1, it is found that
F(1) = 0. Therefore no boundary conditions are required, despite the trans-
formed domain. Now setting y = 0, gives the following near-field boundary
condition:

o€ 5 aC 0B
Speed of Adjustment CSE

Following the same procedure, the Fichera function is:

F(y) = (a1~ ~by(—y) ~ Py(1— y)? — 301~y + 20%(1 ~y)?)o(y).

Focusing on the near-field boundary such that v(0) = 1, yields:

F(0) = (a — %02>.

Resulting in the following cases that are identical to the CIR PDE boundary
conditions:

F(0) >0, o <V2a. No boundary conditions required.
F(0) <o, o >+/2a. Boundary conditions required.

Additionally, the far-field boundary case where v(1) = —1 shows that no
boundary conditions are required. Concerning the near-field condition, when
setting y = 0, the boundary condition is:

%_a%HSK oK
ot Ay ot dy

which is identical to the CIR boundary condition which can thus be solved
using the Thomée scheme.

Volatility CSE

A application of Fichera theory is to the Volatility CSE (4.18):

Fy) = (a0 =y —by(1—y) —o2y(1—)2 — 22(1 =92+ 202y(1 — y)?

(y) = (a(l=y)" = by(l—y) —"y(1-y)" = 50°(1~y)"+ 507y (1 ~y)" Ju(y).
(4.19)

Consider the near-field boundary case with the following condition v(0) = 1:

F(0) = (a — %(72>.

Chapter 4. Sensitivity Approximation Methods 40

Which yields the same boundary condition requirement as the CIR PDE and
SoA CSE. Therefore:

F(0) >0, o < +V2a. no boundary conditions required.
F(0) <0, o >+2a. boundary conditions required.

Setting y = 0 in 4.18 leads to the following boundary conditions:
VvV IV vV IV

g—ﬂ@%y—awzo

Possible Issues...

Within this section multiple near-field boundary conditions have been ob-
tained alongside their need for implementation when the Fichera condition
is not satisfied (F(0) < 0). The issue arises when analysing the PDEs and
noticing that for the sensitivity PDEs the inhomogeneous term is that of a
Bond price B. Therefore if the Fichera condition is satisfied (F(0) > 0),
the presence of the inhomogeneous term means that it does not guarantee
uniqueness of the solution. The requirement of two sets of boundary condi-
tions to solve for the inhomogeneous term and the sensitivity will result in
more than one solution as the choice of boundary condition will significantly
affect the approximation (see results table 6.14).

A further area of research presents itself where before applying any numer-
ical method, it needs to be proven that the sensitivity equations are well-
posed, and thus possess a unique solution in the cases of it satisfying and
not satisfying the Fichera condition. The ramification of these equations not
being well-posed include the introduction of errors of a large magnitude
when applying standard numerical techniques. Therefore any approxima-
tion made without taking into account the possibility of multiple solutions
will result in sub-par results effectively making the CSE approach unsuitable.

41

5 Code Implementation

Each of the methods covered in chapters 3 and 4 will be expanded on in this
section regarding their implementation into code. It is worth noting that the
implementation of such methods requires additional packages in the case of
C++, which will be referenced throughout this section.

The following section will focus on the design of the code with much of the
inspiration taken from [10], which shall be referenced accordingly. The later
section will focus on the implementation of numerical methods covered in
chapter 3 and the final section on the individual sensitivity calculation meth-
ods.

51 C++ Code Design

C++ is considered a low-level language and is essentially an iteration of the
C coding language with the implementation of object orientation and low-
level memory manipulation. The advantage of this language ranges from its
versatility and applicability in many applications as it has no dependencies,
unlike Java which uses interpreters.

Such a low-level language requires more attention in the areas of coding de-
sign, memory management and re-usability, which can be an inherent issue
for novice coders. Gamma et al. (1995) [12] introduce a set of design pat-
tern which aims to make code reusable, resulting in code with low coupling
and higher cohesion. Within this thesis, the code implemented within C++
makes use of a bridge pattern that has the following definition (Gamma et al,
1995))[12, pg.19]:

The decoupling of an abstraction from its implementation so that the code can inde-
pendently vary.

The bridge pattern is implemented to allow a separation between the def-
inition of the hierarchies containing the information relating to the initial
boundary value problem (IBVP) and the methods used to solve the IBVP
and approximate the respective sensitivities. Duffy (2018) incorporated the
same implementation of the bridge design alongside the factory and tem-
plate method [10, pg.673-74]. The same implementation is followed, and
‘abused’ to incorporate the methods covered in previous chapters. Consider
the following simplified coding diagram:

Chapter 5. Code Implementation 42

r— CIRBond —
Approximation » -
Methods Finite Difference Methods
| | Duration
CSE
Crank
Bt Interest Convexity B&C ADE Nicolson
CSE
. \ Virtual /
g u|l-)lc > SoACSE |—
pline Method Of
< IBvpSolver
= Lines
L ,| Volatility | |
Forward AD CSE \‘ /'
ridge
N Black L
Divided Scholes PDE IBvp
Difference
—>| Delta CSE [—] Bridge
Complex
oep Opti G CSE OneF 1B
Method ption amma Virtaal neFactorlBvp
— RhoCSE |—
—>{ Vega CSE

FIGURE 5.1: C++ Code Structure Diagram.

The above structure provides a simplistic representation of the classes which
form the code. Three bridge pattern implementations exist within this code.
Consider the OneFactorIBup abstract base class, that contains a set of pure
virtual functions that are overridden by the methods incorporated in the PDE
classes; this is directly passed into the IBup class via a pointer. IBup obtains
access to the methods in an instantiated PDE class through the OneFactorIBup
pointer. In addition, the IBup class constructor takes in spatial and time axis
intervals via a Range template class (Not shown in 5.4). This section of code
is considered as the definer portion of the code:

class IBvp

public:
Range<val_type> xaxis; // Space Interval
Range<val_type> taxis; // Time Interval
OFI* imp;
IBvp() = delete;

public:
IBvp(OFI& executor, const Range<val_type>& xrange, const Range<val_type>& trange);
// Range Class
/] =--mmmmee-
const Range<val type>& xrange() const;
const Range<val_type>& trange() const;
// Boundary Conditions for BS PDE
[] =mmmmmmm e
val _type LftBnd(val_type t) const;
val_type RhtBnd(val type t) const;

FIGURE 5.2: C++ IBvp Class cpp file.

The second bridge implementation is between IBup and the IBupSolver base
class which is responsible for the creation of the finite difference mesh and
the subsequent calculation of (in this instance) option prices. IBupSolver takes

Chapter 5. Code Implementation 43

in a pointer to the IBup class providing the base class with access to the FDM
axis information and the d/c/r equation methods.

The third bridge implementation is between IBup and the MethodOfLines class.
Such a design is required for the Boost library integrate function that utilises
the RKDP ODE method to integrate a system of ordinary differential equa-
tions (see 3.4.1). The function requires a set of inputs that make it incom-
patible with the IBupSolver base class forcing many of the inputs such as,
mesh creation and calculation inside an overloaded operator. Therefore, to
incorporate this method into the code requires a secondary bridge proceed-
ing from the IBup class. This section of the code is regarded as the solver
portion.

The definer portion of the code will now be expanded on.

5.1.1 C++ Definer Code Section

Instantiation Order

Option Class Range Class

PDE Class

IBvp Class

4

Method Class

FIGURE 5.3: C++ Instantiation Flowchart.

Figure 5.3 provides the order in which classes are instantiated within the
code written for this thesis. Only extracts of such code will be taken and
expanded upon to provide a general idea on how the code functions. The
Black-Scholes PDE will be used to expand on the classes given in 5.3, starting
with the option class.

Option Class

The class Option is responsible for collecting user input and contain the nec-
essary parameters to price either an option, in this case, or a bond in another
instance.

Chapter 5. Code Implementation 44

1| #ifndef OPTION_HPP
2 | #define OPTION_HPP
3

4 | #include <iostream>
5

6| using val_type = double;
7

8| class Option

91 {
10 | public:
11 // Define Option Values
12 val_type K;
13 val_type T;
14 val_type r;
15 val_type sig;
16 val_type b;
17 val_type SMax;
18
19 // Target Value;
20 val_type Target;
21
22 char type;
23| };
24
25| #endif

FIGURE 5.4: C++ Option Class hpp file.
Figure 5.4 is a simple class that contains the parameters of an option with the
inclusion of a Target and type value. These are specifically implemented to
identify specific values that have been approximated and whether the option
is a European Put or Call option. An instance of the Option class is created
with the subsequent user input of parameter values.

PDE Classes

Proceeding the option class instantiation comes the instantiation of a PDE
object. Using the Black-Scholes PDE as an example in figure 5.5, Option is
passed by reference to the PdeBlackScholes giving the class access to required
option parameters. Each of the methods within PdeBlackScholes is inherited
from the OneFactorIBup class denoted "OFI” and remains constant such that
no modification of the option class parameters can be made.

Classes that hold information on a specific PDE/CSE contain four sets of
boundary conditions and two sets of initial conditions. As discussed in 4.5,
many of the CSEs contain source (inhomogeneous) terms that require a set
of either option or bond prices to calculate the sensitivity. Therefore, during
the calculation of sensitivities, the associated bond /option price needs to be
calculated in parallel, which requires its own boundary conditions and initial
condition.

The set of classes contain diffusion, convection and reaction methods which
define the PDE. Using the Diffusion method (line 43) as an example, the
method will return the following diffusion term of the Black-Scholes equa-
tion: 1
2¢2
~0°5°.
i

Chapter 5. Code Implementation 45

As each of the PDEs/CSEs covered within this thesis are d/c/r equations,
the implementation of the OneFactor]Bup abstract base class becomes useful
as multiple PDE class inclusion files with small changes do not need to be in-
cluded in the IBup class despite having minor changes to each d/c/r method.

11| class PdeBlackScholes : public OFI

12| {

13 // As other classes will be using the diffusion, convection etc. terms
14 // we need to ensure these are public.

15

16 | public:

17 // Define following option class location.

18 Option opt;

19

20 // Constructor (takes in option for access to parameters).
21 PdeBlackScholes(const Option& option);

22

23 // Destructor (default)

24 ~PdeBlackScholes();

25

26 | public:

27

28 F et e e
29 // Standard European Option

30 F e et e
31

32 // Boundary Conditions for standard option

33 A e e T

34 val _type LftBnd(val_type t) const;

35 val_type RhtBnd(val_type t) const;

36

37 // Initial Condition for standard option

38 A e

39 val _type IntCnd(val_type x) const;

40

41 // Diffusion, Convection etc Methods

42 ff] cosmcccscacconasocnanacccnancnnas

43 val_type Diffusion(val_type x, val_type t) const;

44 val_type Convection(val_type x, val_type t) const;

45 val_type Reaction(val_type x, val_type t) const;

46 val_type Inhomog(val_type x, val_type t) const; // Forcing Term (RHS)
a7

48 // Source Term Initial and Boundary Conditions

49 F A e e

50 val _type inLftBnd(val_type t) const;

51 val_type inRhtBnd(val_type t) const;

52 val _type inIntCnd(val_type x) const;

53

54 // Source Term D/C/R Method

55 J/ =mmmmmmm e

56 val_type inDiffusion(val_type x, val_type t) const;

57 val_type inConvection(val_type x, val_type t) const;

58 val_type inReaction(val_type x, val_type t) const;

59

60 // PDE Signature (Allows ibvpSolver to identify which PDE is being used).
61 int Signature() const;

62 val_type Underlying() const;

63 val type DiffSig(val type x, val type t) const;

64| };

FIGURE 5.5: C++ Black-Scholes Class hpp file.

Before the IBup class object is instantiated, two instances of the 'Range’ tem-
plate class needs to be defined for both the spatial and time interval. As the
Range class contains the interval of the truncated (or transformed) domain,
passing them into the IBup class provides it with the necessary information

Chapter 5. Code Implementation 46

of the PDE and the bounded domain in which it is constrained too.

Initial Boundary Value Problem Class

Figure 5.2 has been expanded upon concerning the bridge design of the code.
However, as a class, it is a cumulation of information that contains the param-
eters required to construct a finite-difference mesh and call any PDE meth-
ods. This is accomplished by passing the OneFactorIBup pointer and the range
template classes (by reference) into the class constructor. Then, via the bridge
design pattern if the IBup class is passed to another class, so are all the definer
section methods from the PDE and Range classes.

5.1.2 C++ Solver Code Section

The solver section of the C++ code consists of passing the IBup class and final
set of mesh information (the number of spatial/time steps) into a numerical
method and thus calculate the solution of the PDE in question as shown in
5.3. Notably, this section of code follows from an implementation in Duffy’s
(2018) book [10, pg.680-85].

Firstly, consider the IBupSolver class header file extract:

class IBvpSolver

{
protected:

void initMesh(long NSteps, long JSteps);
void initIC();

public:
IBvpSolver& operator = (const IBvpSolver& source) = delete;

IBvpSolver();
IBvpSolver(IBvp& source, long NSteps, long JSteps);
virtual ~IBvpSolver();

// Virtual Function used to approximate
virtual vec& result();

// Iterates along the x-axis inside the result t-axis loop
virtual void calculate() = ©;

// Array of x values
const vec& XValues() const;
// Array of t values
const vec& TValues() const;

protected:
IBvp* ibvp;

FIGURE 5.6: C++ IBvpSolver hpp file.

The extract contains all the methods used within the IBupSolver class file and
demonstrates the bridge pattern design through the inclusion of the IBup
class pointer that has been passed into the class. Methods such as initMesh
(line 17) and initIC (line 18) are called upon initialisation via the constructor,
and this creates the finite difference mesh and vector required to compute the

Chapter 5. Code Implementation 47

solution. IBupSolver contains the virtual function calculate which is overrid-
den by the numerical methods through inheritance. The numerical method
classes that inherit from IBupSolver gain access to protected /public methods
and variables within the class, providing access to methods from the definer
section of the code.

Consider the Crank Nicolson header file extract in figure 5.7. Line 31 con-
tains the constructor that takes in a pointer to the IBup class and the number
of steps for both the spatial and time domains. The constructor’s main func-
tion (within the cpp file) is the instantiation of the IBupSolver class in which
the IBup class is passed alongside the number of steps associated with each
domain.

class CNIBVP : public IBvpSolver

{

private:

// Notice that we store the data that 'belongs' to

// this class. It is private and will not pollute the
// other classes.

vec A, B, C; // Lower, diagonal, upper

vec F; // Right-hand side of matrix

// Additional Vectors to calculate source term components.
vec inA, inB, inC;
vec inF;

// Thomee Box Scheme Components
val_type t1, t2, t3, ptvLam, ntvlLam, Lam;

// 2X2 Matrix Diagonal Components
vec Ldiag, Mdiag, Udiag;

public:

CNIBVP();
CNIBVP(IBvp& source, long NSteps, long J1Steps);
~CNIBVP();

void calculate();

private:

val_type InhomogTerm(val_type x, val_type t, int i) const;
void CrankInhomog();

val_type NearField();
void ThomeeScheme();

private:

128

// PDE type check
std::vector<int> typecheck = { @, 1, 2, 3, 4 };

FIGURE 5.7: C++ Crank Nicolson Method hpp file.

Through the creation of a Crank Nicolson class object, an instance of the IB-
vpSolver class is created via its constructor (fig D.1, line 15) resulting in a
full FDM mesh without any further user defined code. Finally the virtual
method result(.) is called by the user to obtain the approximation to the PDE.
Consider the following option pricing example:

Chapter 5. Code Implementation 438

66 | int main()

67| {

Option myOption;

myOption.K = 65.8;
myOption.sig = ©.3;
myOption.T = ©.25;
myOption.r = ©.08;

myOption.b 0.08;
myOption.SMax = 100.0;
myOption.type = 'P';

myOption.Target = 60;

PdeBlackScholes PBS(myOption);

Range<double> rangeX(@.@, myOption.SMax); // Space Interval
Range<double> rangeT(@.0, myOption.T); J// Time Interval

IBvp currentImpBS(PBS, rangeX, rangeT); // IBvp Class Instance
long J = static_cast<long> (rangeX.spread());

long N = 1000;

CNIBVP bsCN(currentImpBS, N, J); // CNIBVP Instance

vec bCN = bsCN.result('C'); // Results Vector

FIGURE 5.8: C++ Option Pricing Example.

5.2 C++ Numerical Method Implementation

The following section will provide details on the function of each numeri-
cal method using the classic Black-Scholes PDE to explain such procedures.
Firstly, the calculation section of the IBupSolver class will be expanded on.

86 | vec& IBvpSolver::result()

87| {

107
1e8| }

for (std::size_t n = 8; n < tarr.size(); ++n)

{

}

tnow = tarr[n];
calculate();
tprev = tnow;
// Vector captures each time step along the T mesh collecting all the
// option prices from t = ® to t = T. Used to calculate Greek Theta.
ThetaResultHold.push_back(vecOld[UnderlyingTarget]);
for (std::size_t j = @; j < vecNew.size(); ++3j)
vec0ld[j] = vecNew[j];

inhomog0ld[j] = inhomogNew[]j];
}

return vecNew;

FIGURE 5.9: C++ IBvp Results Method.

Upon calling the results method in IBupSolver (via inheritance), it utilises a
set of solution vectors and mesh parameters created upon initialisation. The
method effectively iterates along the user-defined time interval at a specified

Chapter 5. Code Implementation 49

step (k) given by tarr.size(). The loop iterates until it reaches its expiry. Within
the loop, calculate() is activated, calling the calculate methods in either the
Crank Nicolson or ADE class. calculate then iterates along the spatial inter-
val for each time step and approximates the solution of an option/bond or
sensitivity (via CSE).

Upon approximating the solution at a given time step, a vector denoted vec-
New is assigned the values associated with the specific time step approxima-
tion. This vector is copied via the iterative method which is based on Duffy’s
implementation of FDM schemes in C++ (see Duffy (2019) [10, pg.682]) how-
ever, has two modifications allowing the IBupSolver class to deal with the
calculation of the Theta sensitivity (line 99) and PDEs containing inhomoge-
neous terms (line 104).

Line 99 contains ThetaResultHold and alleviates one of the issues associated
with calculating time-related sensitivities via Divided Difference and the Cu-
bic Spline method. As time is forward moving and an independent variable,
the approximations of a specific target (i.e. Theta for an underlying price of
60) needs to be captured instead of all possible spatial interval values (figure
5.10 provides a visual representation). The resulting vector can then be anal-
ysed to obtain an approximation of the theta sensitivity without the cost of
storing a large vector full of unused values.

Line 104 lastly contains the inhomogeneous source term solution vectors in-
homogOld and inhomogNew. These vectors are initialised when an instance
of the IBup class is created, and the boundary conditions / initial condition
are applied to the vector. They operate in the same manner as vecOld and
vecNew because, after each spatial iteration, the approximation values are
stored and passed to the “old” vector for use in the next iteration. After all,
time iterations are complete vecNew is returned containing the option, bond
or sensitivity approximation values.

J [N B B R @ 90000 sesssssssasasas [W]
J-1 ® 9O O ® crrrrrsssrssases ® = ssissssssasasas [W]
i O 0 0 @ rrrrrrsrisaaas @ 0000 ssssssssaseswas e ThEtaVRESUItHOId
lector
4 O O @ recssssssassasas @ 900 sssasssssssaass [W]
3 N B B @ 2000 ssssasasasaiaaas [N]
2 OO @ crrrrrrsssiasas @ 20000 ssssssssssssans [W]
i 'E B BT @ 2000 crrssrssssaseas [W]
0) G B SR Y e i
23 4 n N-1N

FIGURE 5.10: ThetaResultHold Vector Process.

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

Chapter 5. Code Implementation 50

5.2.1 C++ Crank Nicolson

The Crank Nicolson extract in figure 5.7 will now be expanded upon. Apart
from its function, the layout of the method is identical to the ADE class, con-
sider the following code extract (the full code is given in Appendix D.1):

void CNIBVP::calculate()
{ // Tells how to calculate sol. at n+l

// If there exists a source term in the given PDE which is option price based.
// CN will be applied to the standard BlackScholes equation to produce a vector
// of option prices to calculate the RHS.

val_type RHS = ibvp->Inhomog(ibvp->xrange().high(), ibvp->trange().high());

if (RHS != @)

CrankInhomog();
}

double t1, t2, t3, Low, Mid, Upp;

for (std::size_t i = 1; i < F.size() - 1; ++i)

{

(0.5 * k * ibvp->Diffusion(xarr[i], tnow));
8.25 * k * h * ibvp->Convection(xarr[i], tnow);
0.5 * k * h2 * ibvp->Reaction(xarr[i], tnow);

+
\8]
Innn

// Coefficients of the U terms

Ali] Tl - t2; // Lower Diagonal
B[1i] -h2 - 2.8 * t1 + t3; // Domin Diagonal
C[1i] t1 + t2; // Upper Diagonal

// Coefficients of the U terms

double tl1A = 8.5 * k * ibvp->Diffusion(xarr[i], tprev);
double t2A = 8.25 * k * h * ibvp->Convection(xarr[i], tprev);
double t3A = 9.5 * k * h2 * ibvp->Reaction(xarr[i], tprev);

Low
Mid
Upp

-t1A + t2A;
-h2 + 2.0 * t1A - t3A;
-t1A - t2A;

// Approximate Option Price wrt the source term.
F[i] = Low * vecOld[i - 1] + Mid * vecOld[i] + Upp * vecOld[i + 1]
+ ©.5 * k * h2 * InhomogTerm(xarr[i], tnow, 1);

}

// Define boundary conditions
val_type BCL;
val type BCR = ibvp->RhtBnd(tnow);

// If statement to calculate boundary condition if CIR process is in use.
int Typ = ibvp->Signature();

it (Typ == 8)

{ BCL = NearField(); }

else

{ BCL = ibvp->LftBnd(tnow); }

// Create option template for the double sweep tridiagonal matrix solver
DoubleSweep<double> mySolver(A, B, C, F, BCL, BCR);

vecNew = mySolver.solve();

FIGURE 5.11: Crank Nicolson calculate method.

The above extract of the calculate method immediately draws similarities to
3.7 and 3.12 as each implementation was made under the intent of keeping

Chapter 5. Code Implementation 51

the class applicable for any d/c/r equation. Calling calculate() results in the
following actions:

e The identification of any possible source (inhomogeneous) terms (line
129).

e The application of the Crank Nicolson Method (3.2.2).
e Definition, calculation and implementation of the boundary conditions.

e The application of the Double Sweep tridiagonal solver (see Duffy (2018)
[10, pg.396]).

Beginning with the first action, the implementation of an IF statement is to

prevent unnecessary calculations. If the Inhomog term located in the PDE

class of a d/c/r equation is not equal to zero, then a secondary spatial loop

will begin that iterates on an FDM mesh using the boundary conditions/initial
condition of the source term. In the case of a Black-Scholes CSE, the loop

would approximate the option price in parallel with the approximation of

the sensitivity.

The second action involves standard Crank Nicolson iteration that imple-
ments the algorithm from chapter 3.2 to approximate the bond price with the
addition of the source term that was calculated in parallel (line 159). The
third action involves the determination of the near-field boundary condi-
tion that depends on the PDE signature. This specifies whether the Thomée
scheme is required in the algorithm to approximate the boundary condition
PDE as described in 3.2.3.

The section of code involving the Thomée method implements itself by merely
implementing the box quotient terms (1 + A) and (1 — A) into the Crank
Nicolson matrix resulting in one additional unknown term in the solution
vector of the equation system. However, in order to maintain compatibility
with the double sweep tridiagonal solver, a 2x2 matrix is first solved to cal-
culate the boundary conditions which is implemented into the tridiagonal
solver in the final action of the method (see figure 5.12).

Chapter 5. Code Implementation 52

l+4 1-4 vl (L=DVE + (L+Aave
A, B vt F
A4 B G v F,
Ay By oy ||V Fry
Lo vt F

1+4 1-4 yit =DV + (1+v! _
= Obtain Boundary Condition V™.
A B | v Fy
vl vyt (I=AVy + (1+ V]
A B G v Fy
A B G Vit F,
- nt1
A By G V.::rl Fro
e Fy

FIGURE 5.12: Implementation of the Thomée Scheme into the
Crank Nicolson Class.

Note that the above method is implemented into C++ for compatibility pur-
poses. The application of the Thomée method is implemented into MATLAB
and only requires the built-in inverse "backslash” command which although
is basic, provides a small enough computation time to make it a much more
feasible solution than the above. See Appendix E.1 for the full Crank Nicol-
son MATLAB code that is specific to solving the CIR zero-coupon bond pric-
ing PDE.

5.2.2 C++ ADE Implementation

Following a close layout with figure 5.11, figure 5.13 uses the same code to
identify the requirement of a source term and thus calculate the option/bond
price in parallel with the CSE approximation. The difference within this
method stems from the requirement of two loops to calculate the upwind
and downwind sweeps. These work in parallel in opposite directions along
the spatial axis. Lastly, on line 222, a loop is used to average the upward
and downward vectors where the approximation is stored in vecNew. Aside

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
21e
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

Chapter 5. Code Implementation 53

from calculate(), the ADE class bears a close resemblance to the previously ex-
panded Crank Nicolson class. In addition to the ADE C++ implementation,
the full code has been developed within MATLAB with an alternative CN
implementation ([17]) and is given in E.2.

// Main method used to calculate upward and downward sweep for the B&C ADE method.
// Where the average is then taken producing a vector of approximations.

void ADE_BC::calculate()
{

// Implementation of possible inhomogeneous term.
val_type RHS = ibvp->Inhomog(ibvp->xrange().high(), ibvp->trange().high());
if (RHS != @)

BCInhomog();

// Implementation of boundary value solver if the PDE is a CIR Zero Coupon PDE.
int Typ = ibvp->Signature();
if (Typ == 8) // CIR PDE

// Solve CIR PDE Boundary Condition

val_type NearBnd = cirNearField(); // Using Thomee/Box Method
U[@] = NearBnd;

V[@] = NearBnd;

else // Case in which no PDE needs to be solved to obtain boundary conditions.

ure]
v[e]

ibvp->LftBnd(tnow);
ibvp->LftBnd(tnow);

// Set up boundary conditions and initial conditions of the given PDE.
U[U.size() - 1] = ibvp->RhtBnd(tnow);
V[V.size() - 1] = ibvp->RhtBnd(tnow);

for (std::size_t j = 1; j < U.size() - 1; ++j)
{

// Populate vectors

Uold[j] = VOld[j] = vecO0ld[j];

double t1, t2, t3, t4;

// Compute Upward Sweep (formulae in book) from j =1, ... , J-1
for (std::size_t j = 1; j < U.size() - 1; ++3j)
{

auto xval = xarr[j];

tl = (k / h2) * ibvp->Diffusion(xval, tnow);

t2 = 0.5 * (k / h) * ibvp->Convection(xval, tnow);
t3 = (1.2 + t1 - k * ibvp->Reaction(xval, tnow));
t4 = -k * InhomogTerm(xval, tnow, j);

U[F] = ((t1 - t2) * U[§ - 1] + (1.8 - t1) * UOld[]] +
(t1 + t2) * UOLd[] + 1] + t4) / t3;

¥
// Compute Downward Sweep from j = J-1, ... , 1 (J-2 as BCs are applied).
for (std::size_t j = V.size() - 2; j >= 1; --3)
{
auto xval = xarr[j];
t1l = (k / h2) * ibvp->Diffusion(xval, tnow);
t2 = 8.5 * (k / h) * ibvp->Convection(xval, tnow);
t3 = (1.9 + t1 - k * ibvp->Reaction(xval, tnow));
t4 = -k * InhomogTerm(xval, tnow, j);
V[3] = ((t1 - t2) * VOld[j - 1] + (1.0 - t1) * vOold[j] +
(t1 + t2) * V[J + 1] + t4) / t3;
}
for (std::size_t j = @; j < vecNew.size(); ++3)
{
vecNew[j] = 8.5 * (U[J] + V[il);
}

FIGURE 5.13: Alternating Direction Explicit calculate method.

Chapter 5. Code Implementation 54

5.2.3 C++ Method Of Lines Implementation

Section 5.1 alluded to a separation of the Method Of Lines scheme that does
not inherit from the IBupSolver class but requires a secondary ’bridge” im-
plementation from the IBup class. The reasons for such a design will be ex-
panded upon within this subsection.

Boost is an open source library that adds additional functionality to C++
whilst working in conjunction with the STL library (see Ahnert and Mulan-
sky (2015) [2]). The Method Of Lines scheme uses Odeint integrate functions
[2] where the RKDP method is utilised (3.4.1). Consider the syntax of the
boost function:

integrate(stepper , system , x0 , t0, t1 , dt , observer)

The above parameters of the function carry out the following:

Stepper: Defines how the integration process is to be carried out.

System: Implements the system of ODEs and calculates the time
derivative of each ODE.

x0: Initial Condition.

t0, t1 : Initial and Final times for the integration process.

dt: Time Step.

Observer : Called at every time step and prints the current approximation.

The above boost function takes in a system variable that contains the neces-
sary steps to discretise a PDE into a system of ODEs as explained in 3.4.1.
The stepper can take in simple functions that return ODEs such as:

dx
— = —2x.

of *
However, to solve d/c/r equations, functors are required (i.e classes/structs
that "act’ like functions). Consider the Method Of Lines C++ declaration ex-
tract in figure 5.14 (full code is located in Appendix D.2).

#include
#include
#include
#include
#include

#include

Chapter 5. Code Implementation 55

<iostream>
<boost/numeric/odeint.hpp>
<boost/numeric/ublas/vector.hpp>
<boost/numeric/ublas/matrix.hpp>
<boost/numeric/ublas/io.hpp>

"ibvp.hpp"

using val_type = double;
typedef std::vector<val_type> state vec;
typedef boost::numeric::ublas::matrix<val_type> state_mat;

enum bnd

{ Lft, Rht, Inner };

class MethodOfLines

.
public:

// Default Constructor
MethodOfLines(IBvp& source, long NSteps, long JSteps);

~MethodOfLines();

// Vector System

void

operator()(const state vec& U, state_vec& dudt, const val_type t);

// Matrix System

void

operator()(const state_mat& U, state_mat& dudt, const val_type t);

inline val_type InhomogTerm(val_type x, val_type t, std::size_t i,

bnd bound, state_mat U) const;

int PDEtype() const;

// Initial Condition Methods (vector and matrix)
state_vec IntCnd();
state_mat MatIntCnd();

protected:
IBvp* ibvp;

long
long

N;
15

state_vec xarr;
state_vec tarr;
state_vec inhomog;

public:

val_type h, h2, hmi;
val_type k;

val_type T;
val_type TO;

1’5

FIGURE 5.14: Method Of Lines header file.

As the Method Of Lines scheme reduces the PDE to a system of ODEs, a
tinite-difference mesh no longer needs to be constructed. Instead, the number
of steps in the spatial and time directions need to be defined that are used in
the integration process. As with the previous methods, the code is designed
to calculate d/c/r equations that contain inhomogeneous source terms. For
that reason, two operator overloads are implemented in lines 46 and 48. Each
overload varies by its input as a standard application of the scheme requires
only a vector to approximate a solution. However, the inclusion of a source

Chapter 5. Code Implementation 56

term implies that two approximations need to be calculated in parallel lead-
ing to the requirement of the uBLAS matrix (another feature of the boost
library) that is compatible with the integrate function. Despite being inde-
pendent of IBupSolver, the class shares a near-identical InhomogTerm method
used to supply correct inhomogeneous components to the discretised PDE
depending the signature of the PDE.

The limitation of using the boost library is that it is difficult to implement into
a specific code design without sufficient knowledge of the boost library and
careful planning. This is clear since the MethodOfLines class is only a com-
ponent of the final calculation (i.e the system). The additional components
are defined in the main.cpp section of code within the following function that
performs the approximation:

546 | vec MethodOfLinesResult(MethodOfLines source)

547 | {

548 int type = source.PDEtype();

549 (type ==

550 {

551 state_vec U = source.IntCnd();

552 std::size_t steps = Bode::integrate(source, U, source.T@, source.T, source.k);
553 U;

554 }

555

556 {

557 state_mat U = source.MatIntCnd();

558 std::size_t steps = Bode::integrate(source, U, source.T@, source.T, source.k);
559

560 // Store results inside vector and return.

561 vec sensitivity(U.sizel());

562 (std::size t j = @; j < sensitivity.size(); ++3j)

563 { sensitivity[j] = U(j, 1); }

564 sensitivity;

565

566 | }

FIGURE 5.15: Method Of Lines main.cpp function.

Upon inspection, the function requires an input of the MethodOfLines class
passed through where the PDE is identified as having either a source term or
not. Depending on the type of PDE, the vector or matrix overload is passed
into integrate with an initial vector constructed in the MethodOfLines class,
and its time integration parameters. An additional limitation reveals the dif-
ficulty of implementing methods such as the Thomée scheme without inter-
fering with the strict nature of the Odeint integration functions.

5.3 C++ Implementation: Approximation Methods

Before proceeding with the C++ implementation of the approximation meth-
ods used to calculate sensitivities, it is worth noting that the previous meth-
ods from 5.2 are solely used to approximate the sensitivities of the CSE equa-
tions (4.5). Therefore, the approximation of sensitivities using CSEs will not
be covered further in this chapter.

Chapter 5. Code Implementation 57

5.3.1 Divided Difference

The implementation of the Divided difference method into C++ is a relatively
straight forward process. 5.16 presents the procedure of using the Divided
Difference.

Approximate Output Vector of Input Divided
Bond/Option [—— | Bond/Option —— Difference
Price Prices Process

FIGURE 5.16: A Simplified diagram to explain the procedure of
calculating Divided Difference sensitivity approximation.

Due to the simplistic nature of Divided Difference and the minimal code re-
quired to compute such approximation. The function code implemented into
main.cpp is located in figure 5.17. Line 427 is the function definition and re-
quires the inputs of a target (i.e the sensitivity of an option with an under-
lying of £60); a vector xtarr, the mesh created in IBupSolver or MethodOfLines
and lastly, the solution vector returned from the approximation methods dis-
cussed in 5.2.

The function code is designed to calculate both first and second-order ap-
proximations of sensitivities where a Cubic Spline object is instantiated to ob-
tain specific approximations (via interpolation) based upon the user-defined
target. As alluded too in figure 5.10, the calculation of time-related sensi-
tivities, such as Theta requires special treatment given the awkward nature
of approximating the sensitivity relating to the independent variable. Line
482-493 accomplishes such an approximation using the backwards-difference
quotient as the direction of time is known. Upon performing the Divided
Difference calculation, the Cubic Spline interpolation is used to return an ap-
proximation of the sensitivity.

Chapter 5. Code Implementation 58

437 | void DividedDifference(double target, vec xtarr, vec solution,

438 Type sensitivity_order)

439 | {

440 // Obtain new interval.

441 vec zarr(xtarr.size() - 2);

442

443 // Populate new interval container.

444 for (std::size_ t j = ©; j < zarr.size(); ++j) { zarr[j] = xtarr[] + 1]; }
445

446 // Identify Step Size.

447 double h = zarr[1] - zarr[@];

448

449 // Create Instance of Spline Class.

450 tk::spline DDspline;

451

452 if (sensitivity order == first)

453 {

454 // Create Target Vector Location

455 int target_step = static_cast<int>(target / h);

456

457 // Create solution vector

458 vec DivDif(zarr.size());

459 for (std::size_t j = @; j < zarr.size(); ++j)

460 {

461 // Perform Divided Difference

462 DivDif[j] = (solution[j + 1] - solution[j - 1]) / (2 * h);
463 }

464 DDspline.set_points(xtarr, DivDif);

465 printf("First Order Divided Difference at %f is %f\n", target,
466 DDspline(target));

467

468 else if (sensitivity_order == second)

469

470 // Create Target Vector Location

471 int target_step = static_cast<int>(target / h);

472 vec DivDif(zarr.size());

473 for (std::size_t j = @; j < zarr.size(); ++3j)

474 {

475 DivDif[j] = (solution[j + 1] - 2 * solution[j] + solution[]j - 1])
476 / (h * h);

477 }

478 DDspline.set_points(xtarr, DivDif);

479 printf("Second Order Divided Difference at %f is %f\n", target,
480 DDspline(target));

481 }

482 else if (sensitivity_order == theta)

483 {

484 vec ForDif(solution.size());

485 double k = xtarr[l] - xtarr[©];

486

487 for (std::size_t j = 1; j < std::size(ForDif); ++3j)

488 {

489 ForDif[j] = -(solution[j] - solution[j - 1]) / k;

490

491 std::cout << "S = " << static_cast<int>(target) << std::setprecision(12)
492 << ", forward sensitivity: " << ForDif[xtarr.size()-2] << std::endl;
493

494 | }

FIGURE 5.17: Divided Difference main.cpp function.

5.3.2 Cubic Spline Interpolation

The implementation of the Cubic Spline interpolation method follows a close
resemblance to the implementation of the Divided Difference:

Chapter 5. Code Implementation 59

496 | void CubicSpline(int target, vec xtarr, vec solution, Type derivative_order)
497 | {

498 // Define new interval (Cubic, therefore N-2)

499 vec zarr(xtarr.size() - 2);

5e0 // Populate new vector

501 for (std::size_t j = @; j < zarr.size(); ++j) { zarr[j] = xtarr[] + 1]; }
502

503 if (derivative _order == first)

504

5e5 // Integer identifies the target value to display the solution for.
506 int target_step = target / (zarr[l] - zarr[@]);

507

5e8 // Create solution vector

509 vec spline(zarr.size());

510

511 CubicSplinelInterpolator CSI(xtarr, solution, SecondDeriv);

512 for (std::size_t j = @; j < zarr.size(); ++3j)

513 {

514 spline[]j] = CSI.Derivative(zarr[j]);

515

516 std::cout << std::setprecision(12) << std::fixed << "S = " << target
517 << ", Cubic Spline: " << spline[target_step-1] << std::endl;

518

519 else if (derivative_order == second)

520 {

521 int target_step = target / (zarr[l] - zarr[@]);

522

523 // Create solution vector

524 vec spline(zarr.size());

525

526 CubicSplineInterpolator CSI(xtarr, solution, SecondDeriv);

527 for (std::size t j = @; j < zarr.size(); ++3j)

528 {

529 spline[j] = CSI.SecondDerivative(zarr[j]);

530

531 std::cout << std::setprecision(12) << std::fixed << "S = " << target
532 << ", Cubic Spline: " << spline[target_step-1] << std::endl;

533

534 else if (derivative_order == theta)

535 {

536 // Identifies target step (theta range is multiplied by 1.2 to avoid oscillations).
537 int target_step = (solution.size() - 1) / 1.2;

538

539 // Create solution vector

540 vec spline(xtarr.size());

541

542 // Relates to the time decay, therefore is defined on the time interval.
543 CubicSplinelInterpolator CSI(xtarr, solution, SecondDeriv);

544 for (std::size_t j = @; j < xtarr.size(); ++3)

545 {

546 spline[]j] = CSI.Derivative(xtarr[j]);

547 }

548 std::cout << std::setprecision(12) << std::fixed << "S = " << target
549 << ", Cubic Spline: " << -spline[target_step] << std::endl;

550

551 | }

FIGURE 5.18: Cubic Spline main.cpp function.

Figure 5.18 contains a function used to calculate the sensitivity of a d/c/r
PDE via the use of the CubicSplinelnterpolation class. This applies the formu-
lae presented in chapter 4.2 to obtain approximations of the first and second
derivative (the reader is referred to Duffy (2018) [10, pg.418-20]). The above

Chapter 5. Code Implementation 60

function contains three cases of cubic spline interpolation, the first and sec-
ond derivative use the standard reduced spatial axis interval to obtain an in-
terpolated function. However, the final case approximates Theta (time sensi-
tivities) via the uses of an extended time domain which was created to avoid
the oscillations associated with the ‘endpoints’ of the interpolated function.

The range adjustment brought about a limitation of calculating time-related
sensitivities as it requires a secondary adjusted range PDE object. As a re-
sult, several issues are apparent, such as the identification of the target sen-
sitivity (e.g. Theta for an underlying price of £60) given the change in the
domain of the PDE. The solution is to multiply the range by a factor of 1.2
and adjust the parameters accordingly. Finally, as a matter of preference, the
time-sensitivity approximation is represented as a negative number to indi-
cate time decay.

5.3.3 Forward Automatic Differentiation

Forward Automatic Differentiation is implemented through the use of Pul-
vers (2019) autodiff library [19], which takes advantage of the Boost open
source library. Within this thesis, two classes are created to implement the
Forward AD method, one for the Black-Scholes option price and the second
for the CIR bond price which will be expanded on (full Black-Scholes code is
given in Appendix D.3).

Figure 5.19 contains two main components: the template boost method and
the calculation method. The calculation method begins by creating a tuple of
four maximum derivative variables equal to their sensitivity values (Line 19).
As this thesis is interested in calculating Convexity, the second derivative of
the interest rate, the associated variable is given the value of two.

Lines 21-24 assign the tuple values to their associated variable names pro-
ducing a compatible form for Forward AD. Lines 47-60 contain the template
method which performs the Forward AD calculation (using the autodiff.hpp
file). Similarly to the make_ftuple method, promote requires the tuple of sensi-
tivity variables and the closed-form solution of the bond price. Upon creating
the template the .derivative function performs Forward AD depending on the
tuple value given. Consider line 39, Convexity is calculated by inputting a tu-
ple value of 2, informing the derivative method that the second derivative of
the bond pricing formula concerning the interest rate needs to be calculated.

The advantage of the method comes from its ease of implementation. It al-
ludes too in 4.4 that the low adoption of the method is due to the difficulty in
coding. However, the implementation of FAD, for thesis shows a relatively
straight forward code given the use of external AD libraries.

Chapter 5. Code Implementation 61

#include <boost/math/differentiation/autodiff.hpp>
using namespace boost::math::differentiation;

class CirForwardAD

{
public:
CirForwardAD(double a, const double rate, const double sigma, const double tau,
const double soa) : variable(a), target(rate)

Calculate(a, rate, sigma, tau, soa);

void Calculate(double a, const double rate, const double sigma, const double tau, const double

{

auto const variables = make_ftuple<double, 2, 1, 1, 1>(rate, sigma, tau, soa);

auto const& r = std::get<@>(variables);
auto const& sig = std::get<l>(variables);
auto const& T = std::get<2>(variables);
auto const& SoA = std::get<3>(variables);

auto output = [](auto target, auto sensl, auto sens2, auto sens3,
auto sens4, auto sens5)

std::cout << std::setprecision(std::numeric_limits<double>::digitsle)

<< " " << target << ", Duration: " << sensl << "\n"

=

<< "r = << target << ", Convexity: << sens2 << "\n"
<< "r = " << target << ", Expiry: " << sens3 << "\n"
<< "r = " << target << ", Speed Adj: " << sensd << "\n"
<< "r = " << target << ", Volatility: " << sens5 << "\n";

1%

auto const bond_price = CirBondPrice(a, r, sig, T, SoA);

double const Duration = bond_price.derivative(1l, @, @, @);

double const Convexity = bond_price.derivative(2, o, @, 9);

double const Expiry = bond_price.derivative(@, @, 1, 0);

double const SpeedAdj = bond_price.derivative(®@, @, 0, 1);

double const Volatility = bond_price.derivative(e, 1, @, ©);

output(rate, Duration, Convexity, Expiry, SpeedAdj, Volatility);
¥

private:
template<typename Rate, typename Sigma, typename Tau, typename SoA>
promote<Rate, Sigma, Tau, SoA> CirBondPrice(double a, Rate const& r, Sigma const& sigma,
Tau const& tau, SoA const& b)

{
auto const sqr = sqrt(b * b + 2.2 * sigma * sigma);
auto const numl = 2.8 * sqr * exp(@.5 * tau * (sqr + b));
auto const num2 = 2.8 * (exp(tau * sqr) - 1.9);
auto const denom = 2.8 * sqr + (sqr + b) * (exp(tau * sqr) - 1.9);
auto const A = pow((numl / denom), ((2.0 * a) / (sigma * sigma)));
auto const B = num2 / denom;
return A * exp(-r * B);

¥

private:

double variable;
double target;

)-8
FIGURE 5.19: C++ CIR Forward AD Header File

soa)

Chapter 5. Code Implementation 62

5.3.4 Complex Step Method

The Complex Step Methods implementation in the C++ code is considered
awkward due to the requirement of templates that have many variations of
the same equation. Consider the case of pricing a CIR zero-coupon bond; the
C++ CIR template is given in figure 5.20 and holds a case for each of the four
sensitivities covered within this thesis. Depending on the order of sensitivity
required, the bond pricing function is altered to allow for the insertion of a
complex number into the area that requires analysis. For example, if Dura-
tion is to be calculated, a complex number is inserted into all locations where
there exists the interest rate variable. Therefore when the imaginary part of
the difference is taken, it will be with respect to the interest rate variable,
yielding an approximation.

A visible limitation is the bulk of code required to account for each sensitiv-
ity. After the creation of the CIR bond pricing template function, the sen-
sitivities are calculated via the set of function given in figure 5.21. In each
sensitivity approximation, the template is called, taking in a complex num-
ber containing a step and initial value alongside the sensitivities associated
enum. Despite the clunky nature of the code, the amount required to obtain a
sensitivity approximation is little compared to other implementations. A fu-
ture area of work would be to implement the process more straightforwardly,
possibly through the use of template programming.

Lastly, attention needs to be drawn to the issue of applying the method to the
Black-Scholes closed-form solution. The existence of a Gauss error function
makes coding the CSM difficult as the standard library erf() is not extended
to the complex plane. Therefore, the Faddeva open-source C++ wrapper is
required as it provides the necessary complex functions to calculate the com-
plex error function.

109
110
111
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

Chapter 5. Code Implementation 63

template <typename Argu> Argu CirZeroBond(const Argu& z, Bond type)
std::vector<Argu> sol;
if (type == short_rate)
Argu gamma std::sqrt(kappa*kappa + 2.0 * volatility * volatility);

Argu denom = 2.0 * gamma + (gamma + kappa) * (std::exp(gamma * Exp) - 1.0);
Argu b = (2.0 * (std::exp(gamma * Exp) - 1.0)) / denom;

Argu a = std::pow(((2.0 * gamma * std::exp(®.5 * (gamma + kappa) * Exp)) / denom),
((2.8 * kappa * theta) / (volatility * volatility)));

Argu B = a * std::exp(-b * 2);

return B;

¥
else if (type == maturity)
{

Argu gamma std::sqrt(kappa * kappa + 2.@ * volatility * volatility);

Argu denom = 2.0 * gamma + (gamma + kappa) * (std::exp(gamma * z) - 1.89);

Argu b = (2.0 * (std::exp(gamma * z) - 1.@)) / denom;

Argu a = std::pow(((2.0 * gamma * std::exp(@.5 * (gamma + kappa) * z)) / denom),
((2.8 * kappa * theta) / (volatility * volatility)));

Argu B = a * std::exp(-b * s_rate);

return B;

¥
else if (type == vol)
{

Argu gamma = sqrt(kappa * kappa + 2.8 * z * z);

Argu denom = 2.0 * gamma + (gamma + kappa) * (std::exp(gamma * Exp) - 1.0);

Argu b = (2.8 * (std::exp(gamma * Exp) - 1.8)) / denom;

Argu a = std::pow(((2.2 * gamma * std::exp(@.5 * (gamma + kappa) * Exp)) / denom),
((2.8 * kappa * theta) / (z * 2)));

Argu B = a * std::exp(-b * s_rate);

return B;

¥
else // Speed of Adjustment
{
Argu gamma sgrt(z * z + 2.8 * volatility * volatility);

Argu denom = 2.0 * gamma + (gamma + z) * (std::exp(gamma * Exp) - 1.@);
Argu b = (2.9 * (std::exp(gamma * Exp) - 1.9)) / denom;

Argu a = std::pow(((2.2 * gamma * std::exp(@.5 * (gamma + z) * Exp)) / denom),
((2.8 * kappa * theta) / (volatility *volatility)));

Argu B = a * std::exp(-b * s_rate);

return B;

FIGURE 5.20: Complex Step Method main.cpp CIR template
function.

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

Chapter 5. Code Implementation 64

double Duration(double x8, double h)

cmplx z(xe, h);
auto deriv = std::imag(CirZeroBond<cmplx>(z, short_rate));

return deriv / h;

}
double Convexity(double x@, double h)
{
// Using the complex step method, the second derivative uses the real part
// of the function.
cmplx z1(x@, h); // Create an imaginary number using real number and step.
cmplx BS_cmplx = CirZeroBond<cmplx>(zl, short_rate);
double BS_real = CirZeroBond<double>(x®, short_rate);
auto numerator = 2 * (BS_real - BS_cmplx.real());
return numerator / (h * h);
}

double ExpirySen(double x8, double h)

cmplx z(xe, h);
auto deriv = std::imag(CirZeroBond<cmplx>(z, maturity));

return deriv / h;

}
double SoaSen(double x8, double h)

cmplx z(xe, h);
auto deriv = std::imag(CirZeroBond<cmplx>(z, speed_adjust));
return deriv / h;

}
double VolSen(double x@, double h)
{

cmplx z(x@, h);
auto deriv = std::imag(CirZeroBond<cmplx>(z, vol));
return deriv / h;

FIGURE 5.21: Complex Step Method main.cpp CIR sensitivity
functions.

65

6 Coding Results

This chapter focuses on the results obtained from the methods covered within
this thesis. First consider the parameter values used for each approximation:

Option Parameter Values:

Underlying: S=60 (Target).
Interest Rate: r =0.08.

Time to Expiry: T=0.25.

Strike Price: K =65.

Volatility: o =0.3.

Zero Coupon Bond Parameter Values:

Interest Rate: r=0.08 (Target).
Speed Of Adjustment: b (x) = 0.08.
Maturity Time: T =0.25.

Mean: ® =0.6.

Volatility: c=04.

a: Ok = 0.048.

6.1 Closed Form Solutions

Applying the closed form equation in chapter 2 yields the following results

for European Options and CIR zero-coupon bonds:

Option Prices:

Put Option: 5.846285626870 Call Option: ~ 2.133371861931
Sensitivities:

Put Delta: 0.627517137751 Call Delta: 0.372482862249
Put Gamma: 0.042042755754 Call Gamma: 0.042042755754
Put Theta: 3.331141320761 Call Theta: 8.428174421956
Put Vega: 11.351544053522 Call Vega: 11.351544053522
Put Rho: -10.874328472975 Call Rho: 5.053899968259

Chapter 6. Coding Results 66

CIR Bond:

Zero-coupon Bond Price: 0.978966810291096
Sensitivities:

Duration: -0.241911478036699
Convexity: 0.059778495645321
Maturity: 0.087893036824247
Volatility: 1.653066503747697e-04
SoA: 0.002527984560075

6.2 Forward AD, CSM & Closed Form Solutions

The similarities of both Forward Automatic Differentiation and the Complex-
Step Method bodes the question regarding which one of the methods is better
suited to approximate the sensitivities presented within this paper.

Consider the following results from both Forward Automatic Differentiation

and the Complex Step Method for the calculation of option and bond price
sensitivities:

Black-Scholes

Forward Automatic Differentiation

Complex Step Method

Sensitivities Call Put Call Put
Delta 0.372482797962 -0.627517202038 0.372482797962 -0.627517202038
Gamma 0.042042755754 0.042042755754 0.042043026838 0.042043021509
Theta -8.428174386737 -3.331141285542 -8.428174386737 -3.331141285542
Rho 5.053899858201 -10.874328583034 5.053899858201 -10.874328583034
Vega 11.351544053522 11.351544053522 11.351544053522 11.351544053522

Black-Scholes

Forward Automat

ic Differentiation

Complex Step Method

Sensitivities Call Error Put Error Call Error Put Error
Delta 2.70339306E-14 2.69784195E-14 0.00000000E+00 0.00000000E+00
Gamma 6.19987815E-07 6.19987815E-07 3.48903854E-07 3.54232925E-07
Theta 1.00438033E-04 1.00438028E-04 1.00438033E-04 1.00438028E-04
Rho 5.49782442E-13 3.42001982E-11 5.40012479E-13 3.42001982E-11
Vega 1.67396678E-04 1.67396678E-04 1.67396678E-04 1.67396678E-04

TABLE 6.4: Black-Scholes Sensitivity FAD and CSM Results

Chapter 6.

Coding Results

67

CIR Bond Price
Sensitivities

Forward Automatic Differentiation

Complex Step Method

Sensitivity Values

Sensitivity Values

Duration -0.241911478037 -0.241911478037
Convexity 0.059778495645 0.059778495487
Expiry -0.087998279937 -0.087998279937
SoA 0.002527984560 0.002527984560
Volatility 0.000165306650 0.000165306650

CIR Bond Price
Sensitivities

Forward Automatic Differentiation

Complex Step Method

Sensitivity Value Errors

Sensitivity Value Errors

Duration 0.000000E+00 0.000000E+00
Convexity 0.000000E+00 1.583259E-10
Expiry 2.914335E-16 2.914335E-16
SoA 0.000000E+00 0.000000E+00
Volatility 3.359943E-16 4 .959954E-16

TABLE 6.5: CIR Bond Sensitivity FAD and CSM Results

Both tables 6.4 and 6.5 produce results that closely match the closed-form
sensitivity values, demonstrating the effectiveness of both the Forward AD
and CSM method. Each result contains the absolute error, and in each case,
results exist that are identical to the exact sensitivity value.

Table 6.4 contains two sets of less accurate sensitivity approximations for
both Theta and Vega. A possible solution to increase the accuracy of these
sensitivity calculations would be to implement higher-order approximations
given in [1]. Through Excel comparisons, it was found that the Complex-
Step Method produced more accurate results at a precision higher than 12
decimal places making it a recommended method in the case of the Black-
Scholes model. However, the CIR model Duration, Expiry and SoA sen-
sitivities favoured the CSM with the remaining sensitivities favouring the
Forward AD method. Overall, the CSM marginally produced more accurate
results than the Forward AD method making it the recommended method in
the case of this thesis.

6.3 Black-Scholes Numerical Method Approxima-
tions

6.3.1 Black-Scholes Option Price

As alluded to in previous methods, the sensitivity calculations require two
steps: the approximation of the option price and the subsequent approxi-
mation of the option price sensitivities. It is intuitive that a low quality (i.e.
inaccurate) option/bond result will result in a poor approximation of the

Chapter 6. Coding Results 68

sensitivity; therefore, an analysis of the bond price approximations must first
take place.

Consider table 6.6 containing a set of put option prices calculated using the
Crank Nicolson, Alternating Direction Explicit and Method of Lines scheme.
The results vary by the interval in which the spatial and time domain has
been separated. Through a comparison of the absolute errors it is clear that a
change in the time interval does not affect the MOL approximation which is
intuitive, thus escalating the number of spatial steps increases the accuracy
of the approximation and subsequently reduces the absolute error. For this
reason, the MOL produces the ‘best” approximation at 1000 time and spatial
steps.

Despite this, table 6.6 contains a set of interesting results concerning the per-
formance of the Crank Nicolson and Alternating Direction Explicit in relation
to the increase of the number of spatial and time steps. The Crank Nicolson
method obtains its most accurate approximation of the put option price when
J = 100 and N = 200; an unexpected result and perhaps an anomaly in the
data. ADE behaves in an expected manner by obtaining its most accurate
approximation when | = 500 and N = 1000. Neither the CN or ADE meth-
ods achieve their most accurate approximations at 1000 spatial /time steps.
A reasonable explanation is when the roundoff error of the computer begins
to dominate, and an additional increase in the number of spatial steps will
no longer improve the approximation but negatively impact it.

A final comparison in 6.6 between the approximations at each step increment
shows that the ADE/MOL produce the most accurate results, each yielding
the best result six times. The CN method only obtains the best result four
times, making it the worst-performing method within this particular set of
data.

Chapter 6. Coding Results 69
Put Option Spatial Interval (J) 163 P00 500 On0
Time Interval (N) Methods

CN 5.850361245723 5.853532834391 5.854420105830 5.854546831240

100 ADE 5.848273678455 5.845459673760 5.807754717854 5.728201747043
MOL 5.842043564537 5.845223266417 5.846112810890 5.846239861066

CN 5.846207650964 5.849383290494 5.850271696838 5.850398584397

200 ADE 5.845663176295 5.847326888653 5.837785722436 5.803888094062
MoOL 5.842043564537 5.845223266417 5.846112810890 5.846239861066

CN 5.843710462090 5.846888537456 5.847777626234 5.847904611291

500 ADE 5.843613212214 5.846548553923 5.845742036718 5.839868764614
MOL 5.842043564537 5.845223266417 5.846112810890 5.846239861066

CN 5.842877224322 5.846056112542 5.846945429053 5.847072446648

1000 ADE 5.842848733569 5.845966899100 5.846431327839 5.845044157073
MOL 5.842043564538 5.845223266417 5.846112810890 5.846239861066

{-\bsolute Error Spatial Interval (J) 100 200 500 1000
Time Interval (N) Methods

CN 0.004075618853 0.007247207521 0.008134478960 0.008261204370

100 ADE 0.001988051585 0.000825953110 0.038530909016 0.118083879827

MOL 0.004242062333 0.001062360453 0.000172815980 0.000045765804

CN 0.000077975906 0.003097663624 0.003986069968 0.004112957527

200 ADE 0.000622450575 0.001041261783 0.008499904434 0.042397532808

MOL 0.004242062333 0.001062360453 0.000172815980 0.000045765804

CN 0.002575164780 0.000602910586 0.001491999364 0.001618984421

500 ADE 0.002672414656 0.000262927053 0.000543590152 0.006416862256
MOL 0.004242062333 0.001062360453 0.000172815980 0.000045765804

CN 0.0034084025438 0.000229514328 0.000659802183 0.000786819778

1000 ADE 0.003436893301 0.000318727770 0.000145700969 0.001241469797
MOL 0.004242062332 0.001062360453 0.000172815980 0.000045765804

6.3.2 Divided Difference Sensitivity Approximation

TABLE 6.6: Put Option Price Approximations

The following section introduces the approximations obtained from the Di-
vided Difference Method using the ADE, CN and MOL schemes. As ex-
plained in section 4.1, the limitation of using Divided Difference is that all
parameters which are not explicitly defined in the FDM mesh, parameters
such as ¢ and r, are challenging to approximate and do not produce use-
ful results due to the inherent inaccuracies. Therefore, only the sensitivities
related to the state variable and time will only be covered within this section.

6.7 contains a table of sensitivity results and a secondary table of absolute
errors for each approximation. The limitations associated with the integrate
boost library prevented the approximation of Theta sensitivity using the Method
Of Lines scheme. A possible remedy would be to use the observer operator
overload methods, but incorporating the same method of extracting approx-
imations for a specific underlying yielded unusable results.

Chapter 6. Coding Results

70

Sensitivity Method Equal Time (N) and Spatial Steps (J)
Approximations 100 200 500 1000

CN -0.626368000000 -0.626879050074 -0.627246662265 -0.627379382409
Delta ADE -0.627047000000 -0.627564000814 -0.627933600507 -0.628066666327
MOL -0.627768000000 -0.627579795032 -0.627527214945 -0.627519705330
CN 0.041916000000 0.041971187260 0.042012168143 0.042027134857
Gamma ADE 0.041958000000 0.042013316573 0.042053978880 0.042068811245
MOL 0.042075000000 0.042050787148 0.042044040734 0.042043076903
CN -3.365345234190 -3.347102858400 -3.337252517880 -3.334151372240
Theta ADE -3.364262097420 -3.346181287780 -3.336417332440 -3.333343230900

MOL = 2 [z

Absolute Errors Method Equal Time (N) and Spatial Steps (J)
100 200 500 1000
CN 0.001149202038 0.000638151964 0.000270539773 0.000137819629
Delta ADE 0.000470202038 0.000046798776 0.000416398469 0.000549464289
MOL 0.000250797962 0.000062592994 0.000010012907 0.000002503292
CN 0.000127375742 0.000072188482 0.000031207599 0.000016240885
Gamma ADE 0.000085375742 0.000030059169 0.000010603138 0.000025435503
MOL 0.000031624258 0.000007411406 0.000000664992 0.000000298839
CN 0.034103510620 0.015861134830 0.006010794310 0.002909648670
Theta ADE 0.033020373850 0.014939564210 0.005175608870 0.002101507330
moL c [T - [- e

TABLE 6.7: Divided Difference Sensitivity Approximations

Each of the time/spatial step count increments yielded an improvement on
the accuracy of the approximations; the Method Of Lines scheme benefited
the most from more time/spatial steps. At 1000 spatial/time steps, the ADE
method produced the least accurate results in comparison to the CN and
MOL scheme.

The approximations of Theta resulted in a higher absolute error compared
to the errors of other sensitivity approximations. Possible explanations stem
from the extraction of the result within IBupSolver and the additional possi-
bility of the approximation not working well when multiple approximations
are taken along the spatial axis at each time step.

6.3.3 Cubic Spline Sensitivity Approximation

As the Divided Difference and Cubic Spline are carried out similarly, the ap-
proximation of Theta suffers from the same issue associated with the Method
Of Lines scheme, and for this reason, no Theta approximations were ob-
tained.

The results obtained from the Cubic Spline yielded near identical approxima-
tions in comparison to 6.7, with exceptions coming from the Theta sensitivity
results. It is clear that variations in the results arise from the differences in
option price approximations as identified in 6.3.1, it can be determined that
the quality of approximations yielded from both methods are equally accu-
rate for this set of data.

Chapter 6. Coding Results

71

Equal Time (N) and Spatial Steps (J)

Sens.|t|V|t.y Method
Approximations 100 200 500 1000
CN -0.626367985791 -0.626879050074 -0.627246662265 -0.627379382409
Delta ADE -0.627046570414 -0.627564000814 -0.627933600507 -0.628066666327
MOL -0.627767762978 -0.627579795032 -0.627527214945 -0.627519705330
CN 0.041915917578 0.041971187260 0.042012168143 0.042027134857
Gamma ADE 0.041958304582 0.042013316573 0.042053978880 0.042068811245
MOL 0.042074873787 0.042050787148 0.042044040734 0.042043076903
CN -3.365345234190 -3.332227217523 -3.331315032449 -3.331184707114
Theta ADE -3.364262097420 -3.331371666915 -3.330505918924 -3.330389548339
MoL | = 1
P e — N Equal Time (N) and Spatial Steps (J)
100 200 500 1000
CN 0.001149216247 0.000638151964 0.000270539773 0.000137819629
Delta ADE 0.000470631624 0.000046798776 0.000416398469 0.000549464289
MOL 0.000250560940 0.000062592994 0.000010012907 0.000002503292
CN 0.000127458164 0.000072188482 0.000031207599 0.000016240885
Gamma ADE 0.000085071160 0.000030059169 0.000010603138 0.000025435503
MOL 0.000031498045 0.000007411406 0.000000664992 0.000000298839
CN 0.034103510620 0.000985493953 0.000073308879 0.000057016456
Theta ADE 0.033020373850 0.000129943345 0.000735804646 0.000852175231
MoL B B B

TABLE 6.8: Cubic Spline Sensitivity Approximations

6.3.4 Continuous Sensitivity Equations

The approximation of the Greeks using CSEs faces many challenges, one of
which is the determination of the boundary conditions and whether such
solutions are unique within the truncated /transformed domain. The follow-
ing results are obtained using the assumptions presented in section 4.5 and
produce varying results which can often be explained by choice of boundary
conditions and initial conditions applied to the CSEs.

Table 6.9 contains a set of results obtained at varying spatial /time step counts
beginning at 1000 and ending at 2000. Each CSE is approximated using the
Crank Nicolson, Alternating Direction Explicit and Method Of Lines scheme
with their associated absolute errors in table 6.9. An immediate observation
of the results is that an increase in the number of steps does not significantly
improve the accuracy of the approximation; in some cases, the absolute error
tends to climb as in Delta CSE ADE at 2000N /.

A secondary observation from 6.9 reveals the absolute errors associated with
the Vega and Rho CSEs are much larger compared to the absolute errors of
the Delta and Gamma CSE. A logical explanation is that a source term intro-
duces additional inaccuracies into the approximation and thus inhibits any
further improvement.

Chapter 6. Coding Results 72
Sensitivity Equal Time (N) and Spatial Steps (J)
R Method
Approximations 1000 1500 1800 2000

CN -0.625438435989 -0.626130906879 -0.626361830302 -0.628417381420

Delta CSE ADE -0.626053266879 -0.626747561726 -0.626979089992 -0.629038827791
MOL -0.625578023164 -0.626224139098 -0.626439572218 -0.628487738892

CN 0.041489592519 0.041489592519 0.041489382904 0.041489288552

Gamma CSE ADE 0.042060973178 0.042060973178 0.042062852560 0.042063914507
MOL 0.039293324940 0.039293324940 0.039293279548 0.039293259949

CN 10.962063113919 10.967161537103 10.961620369578 10.973885386542

Vega CSE ADE 11.316844851069 11.322066520084 11.316364993956 11.328967001420
MOL 11.309714630206 11.317380748314 11.312473063999 11.325466054044
CN -10.838654360702 -10.856028218188 -10.857301087458 -10.863104298683
Rho CSE ADE -10.838669999515 -10.856039567039 -10.857310907448 -10.863113528672
MOL -10.829672060403 -10.850039742616 -10.852309495406 -10.858613418865

P — N, Equal Time (N) and Spatial Steps (J)
1000 1500 1800 2000

CN 0.002078766049 0.001386295159 0.001155371736 0.000900179382

Delta CSE ADE 0.001463935159 0.000769640312 0.000538112046 0.001521625753
MOL 0.001939178874 0.001293062940 0.001077629820 0.000970536854

CN 0.000553783223 0.000553783223 0.000553992838 0.000554087190

Gamma CSE ADE 0.000017597436 0.000017597436 0.000019476818 0.000020538765
MOL 0.002750050802 0.002750050802 0.002750096194 0.002750115793

CN 0.389648336281 0.384549913097 0.390091080622 0.377826063658

Vega CSE ADE 0.034866599131 0.029644930116 0.035346456244 0.022744448780
MOL 0.041996819994 0.034330701886 0.039238386201 0.026245396156

CN 0.035674222298 0.018300364812 0.017027495542 0.011224284317

Rho CSE ADE 0.035658583485 0.018289015961 0.017017675552 0.011215054328
MOL 0.044656522597 0.024288840384 0.022019087594 0.015715164135

TABLE 6.9: Greek CSE Approximations

A further insight into the behaviour of the CSE equation approximations can
be obtained by varying the number of spatial/time steps by an increment of
25 steps up until N/] = 2000 (80 x 25). The following figures present the

approximations separately for each sensitivity:

-0.56

-0.58

-0.6

-0.62

Delta Approximation

-0.64

-0.66

-0.68

Delta CSE Approximation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

V Vv v v - > - - - - — ~—~— — — — - —

~

Number of Spatial (J) and Time Steps (N)

=== Crank Nicolson Alternating Direction Explicit e |\lethod Of Lines Exact

TABLE 6.10: Delta CSE Plot

Gamma Approximation

Chapter 6. Coding Results

73

0.045

0.044

0.043

0.042

0.041

0.04

0.039

0.038

0.037

0.036

0.035

14

12

10

Vega Approximation

Gamma CSE Approximation

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Number of Spatial (J) and Time Steps (N)

e Crank Nicolson === A|ternating Direction Explicit Method Of Lines

TABLE 6.11: Gamma CSE Plot

Transformed Vega CSE Approximation

— FxaCt

1 3 5 7 9 1113 1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Number of Spatial (J) and Time Steps (N)

=== Crank Nicolson === Alternating Direction Explicit == Method Of Lines

TABLE 6.12: Vega CSE Plot

Exact

Rho Approximation

-10

-12

Chapter 6. Coding Results 74

Transformed Rho CSE Approximation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81

Number of Spatial (J) and Time Steps (N)

e Crank Nicolson Alternating Direction Explicit Method Of Lines Exact

TABLE 6.13: Rho CSE Plot

Figures 6.10, 6.12 and 6.13 display similar oscillatory behaviour where at
low spatial/time step counts the approximation begins to revert towards the
mean. At around 975 spatial/time steps (39) the approximation begins to
smooth off with little observable variation, thus indicating a minimum num-
ber of steps required to obtain a sensible approximation. Figure 6.10 contin-
ues to oscillate at high step counts which may be the result of the Delta CSE
containing no reaction term and the Heaviside function representing the ini-
tial condition of the CSE.

Both figures 6.11 and 6.12 demonstrate the importance of correct boundary
condition approximations. The Gamma CSE uses an approximation of the
Dirac delta function where the user sets the steepness parameter (A); the ad-
dition of any user-defined parameter can lead to significant loses in the ac-
curacy of the approximation and render the CSE impractical. Similarly, the
boundary conditions of Vega are based on the assumptions of it decreasing
to zero at expiry and is therefore used as an initial condition. As previously
discussed in 4.5, Vega may never in practice, be zero and requires further
research to determine the exact boundary conditions.

The final figure 6.13 demonstrates the results of the CSE through a trial and
error approach where the initial condition has been varied to obtain a suit-
able approximation. Figure 6.14 demonstrates the effect of different initial
conditions on the Crank Nicolson approximation of Rho.

Under the assumption that Rho decreases, the initial condition used in 4.13
varied around zero, beginning at p = 0.04 and ending at p = —0.04 (at option
expiry) with the exact put option bond price V fixed at 5.846285626870. The
exact solution line demonstrates the importance of selecting the correct initial
condition since Rho is negative concerning a put option; the initial condition
would also be negative, which is supported by the results.

Rho CSE Approximation

-10.74

-10.76

-10.78

-10.8

-10.82

-10.84

-10.86

-10.88

-10.9

-10.92

Chapter 6. Coding Results 75

Figure 6.14 supports the idea that increasing the number of spatial/time
steps requires an optimal initial condition closer to zero. Therefore it could be
hypothesised that an initial condition of zero (as assumed in the Vega CSE)
would yield optimal approximations with a higher number of spatial/steps.

The effect of changing initial conditions on the approximation of the Greek Rho CSE

0.04 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 -0.005 -0.01 -0.015 -0.02 -0.025 -0.03 -0.035 -0.04

Initial Conditions (Rho at Expiry)

Crank - 1000 N/J Crank - 1500 N/J Crank - 2000 N/J e cxact

TABLE 6.14: Rho CSE Approximations with varied initial con-
ditions

6.4 Cox-Ingersoll-Ross Numerical Approximations

The CIR zero-coupon bond pricing PDE posed a challenge in obtaining suit-
able approximations to the sensitivities presented within this thesis. Imple-
mentations into both C++ and MATLAB were carried out with MATLAB
producing acceptable Bond pricing approximations. Therefore the follow-
ing bond price approximations are obtained using the Alternating Direction
Explicit and Crank Nicolson MATLAB implementations (full code is in ap-
pendix E):

| ExactBond Price | 0.978966810291
Time / Spatial Steps ADE Error Crank Nicolson Error
250 N/J 0.978963415112 3.39518E-06 0.978966689980 1.20311E-07
500 N/J 0.978963058298 3.75199E-06 0.978966939504 1.29213E-07
1000 N/J 0.978962677106 4.13319E-06 0.978966844584 3.42932E-08
1200 N/J 0.978962638629 4.17166E-06 0.978966853070 4.27792E-08
1400 N/J 0.978962577104 4.23319E-06 0.978966824929 1.46377E-08

FIGURE 6.1: CIR bond price results table

Chapter 6. Coding Results 76

The results show that the Crank Nicolson method produces the most accurate
results with smaller absolute errors for each case. The substantial differences
between the ADE and CN methods potentially arise from the different imple-
mentations of the Thomee method that chapter 3 introduces to approximate
the CIR boundary condition PDE. Such differences in the approximation of
the boundary conditions may lead to further variations in the results.

Bond Price Approximations using Alternating Direction Explicit

0.8

Bond Price Approximation

06

0.4

02

12

Bond Price Approximation
o o
o ®

o
=

0.2

737
760
783
806

QN w
LR
@ © B

898
921
944
967
990

VAN VMIITNOMOAINN VAT EOMOONWL® S
ERCR R A NS =R R R Rl IR N
A A RN OoOMmT SIS ANBNNG DO 6~

1013
1036
1059
1082
1105
1128
1151
1174
1197
1220
1243
1266
1289
1312
1335
1358
1381

w

Number of Spatial/Time Steps

———Exact == ADE (250 N/J) ADE (500 N/1) ADE (1000 N/J) ~ ====ADE (1200 N/J) ====ADE (1400 N/J)

Bond Price Approximations using Crank Nicolson

277
299
387

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Number of Spatial/Time Steps

e—xact N (250 N/J) CN (500 N/J) CN (1000 N/J) == CN (1200 N/J) =====CN (1400 N/J)

FIGURE 6.2: CIR bond price approximations

Figure 6.2 Demonstrates the behaviour of the approximations by beginning
at a unit approximation and decreasing steadily until reaching a bond price
approximation of 0. The figures show that as a bond approaches maturity, it
will steadily decrease in value. This is intuitive as the price of the bond and
its payoff are negatively correlated. It is also clear that the approximation

Chapter 6. Coding Results 77

is obtained almost instantly, even at a lower time/spatial step count. This
directly connects with the nature of the zero-coupon bond as the bond price
will be close to its payoff at t = 0.

If the lifetime of a zero-coupon bond is observed up until maturity, the high-
est price of the bond will be at time t = 0. The subsequent bond price will
be close if not equivalent to its payoff at maturity. The issue of using zero-
coupon bonds to approximate sensitivities arises from the lack of variation in
the approximation of the bond price. This is shown through the approxima-
tion of the Duration and Convexity sensitivities using the Divided Difference
method, consider the following;:

Duration Approximations using Divided Difference

0.000000000000

-0.500000000000

-1.000000000000

-1.500000000000

-2.000000000000

Duration Approximation

-2.500000000000

-3.000000000000
Spatial\Time Steps

——Exact Duration ——CN (250 N/J) ADE (250 N/J) ——CN (500 N/J) ——ADE (500 N/J) ——CN (1000 N/J) ADE (1000 N/J) CN (3000 N/J) ADE (3000 N/J)

FIGURE 6.3: CIR Divided Difference Duration approximations

Figure 6.3 contains the approximations of the Duration sensitivity using the
Crank Nicolson and Alternating Direction Explicit methods for varying spa-
tial and time steps. The dark green line represents the exact value of the Du-
ration sensitivity, and by observation, it is clear that from the initial estimate,
the Divided Difference method has over-approximated the value. Despite
implementation into C++ and MATLAB, the explanation stems from the lack
of variation in the first set of bond price approximations such that the appli-
cation of any central difference scheme results in an immediate overshooting.
This was found to be an inherent issue with zero-coupon bond prices with
a similar result coming from the Convexity sensitivity approximation using
the same approximation method.

Chapter 6. Coding Results 78

Convexity Approximations using Divided Difference

60.000000000000
50.000000000000
40.000000000000
30.000000000000

20.000000000000

10.000000000000

Convexity Approximations

0.000000000000
-

-10.000000000000

-20.000000000000

Spatial\Time Steps

= Exact Duration CN (250 N/J) ==ADE (250 N/J) CN (500 N/J) =——ADE (500 N/J) ==——CN (1000 N/J) ADE (1000 N/J) ===CN (3000 N/J) ===ADE (3000 N/J)

FIGURE 6.4: CIR Divided Difference Convexity approximations

Figure 6.4 shows that the Divided Difference underestimates the sensitivity
as highlighted by the exact (black line) Convexity value. Subsequent meth-
ods that implement FDM grids can be expected to behave similarly. A rem-
edy would be to approximate the sensitivity of Bond options which hold
similarities to the Black-Scholes approximation methodology. Therefore the
issues associated with the zero-coupon bond will be negated as the initial ap-
proximations will not be similar to the payoff the bond at maturity but the
payoff of the option at expiry.

This was further tested by implementing the CIR Volatility continuous sensi-
tivity equation as a proof of concept. The CSE closely resembles the standard
CIR bond approximation PDE with an identical boundary PDE and d/c/r
terms with the addition of an inhomogeneous source term component.

Chapter 6. Coding Results 79

Alternating Direction Explicit Volatility CSE Approximations

1.200000000000

1.000000000000

0.800000000000

0.600000000000

0.400000000000

Volatility Approximations

0.200000000000

0.000000000000

1
47
93

139
185
231
277
323
369
415
461
507
553
599
645
691
737
783
829
875
921
967
1013
1059
1105
1151
1197
1243
1289
1335
1381
1427
1473
1519
1565
1611
1657
1703
1749
1795
1841
1887
1933
1979

Number of Spatial/Time Steps

—Exact Volatility Sensitivity ~ ====ADE (500 N/J) ADE (1000 N/J) ADE (1500 N/J) === ADE (2000 N/J)

FIGURE 6.5: CIR ADE Volatility CSE approximations

Given the exact value of the volatility sensitivity in 6.1, the results obtained
from the approximations are entirely off and resemble the bond price approx-
imations in figure 6.2. Once again, the results are affected by two possible
issues — first, the existence of multiple solutions which result in the poor
estimate. Or secondly, the problems where the application of central differ-
encing (either second or first-order) will result in poor approximations due
to the lack of variations in the bond price at around time t = 0.

80

A Option Greek Derivations

The derivation of the option Greeks stem from the introduction of the analyti-
cal solution of the Black-Scholes PDE (2.2). The following closed form Greeks
are provided in Espen Haug’s (2009) book on Option Pricing Formulas [15].

Consider the following identities:

Gaussian CDF: N(x) = \/szﬂ [* el)z,
2
Gaussian PDF: n(x) = \/%767,

CDF Derivative: ON(x) _ n(x) 9x

Consider the components d; and d, of 2.2. Time for d5 must be calculated by
the following:

i3 = (d1—oVT)(d—oVT)=d?—2d10VT + T

s 2
= @ —2(MEE)oY T 4 02T = & —2In § — 2T — T + 02T

= d% —2In <S§<VT>.

Now consider the normal PDF with respect to dj:

&2 (@221 (2T
n(dy) = \/%—neTz = \/%—ne 2<1 < : >) = n(di)ge'™.

The closed form Greeks can now be derived longhand.

A.1 Greek Delta

Differentiating 2.2 with respect to the underlying S yields:

oN (d —yTON(d
g_(si = N(d)+S 8(51)_Ke rT a(sz)

Appendix A. Option Greek Derivations 81

- N(dl) +SBN(1)%tél _Ke_rTaJ\/'(dz) %%2
= N(d1) + Sn(d) 53 — Ke"Tn(d2) 52

= N(dy) + Sn(d) % — Ke " Tn(dy) S~ %%

= Ndy + Sn(dy) %2 — Sn(d1)%2.
Now evaluate the derivative of d; and d; with respect to the underlying:

2
ad; 9 <1n(%>+(f+%)T>1 1 ody

aS ~ aS o/T " SoJT S’
Moving attention back to the call price derivative:

oC dd; ddy
55 =N () +5n(d) (53— 52) = N(d) >

The following closed form solution is obtained for Greek Delta (Haug, 2009)
[15, pg.21]:

Acar = ?)_g :N(dl) >0

Apyt = g—l;:N(dl)—1>0

A.2 Greek Gamma

Since Gamma is the second derivative of the analytical Black-Scholes solution
(2.2) with respect to the underlying S. The closed form solution of Gamma is
obtained by simply differentiating Greek Delta again with respect to S.

9%C oN (d od
T = M =n(d)5e

dS *

Differentiating d; with respect to S yields the following:

L = n(dy) o 7= > 0.

\F

The following closed form solution is obtained for Greek Gamma (Haug,
2009 [15, pg.38]):

Lo = 1—‘put = 1 ez >0.

Appendix A. Option Greek Derivations 82

A.3 Greek Rho

Differentiate 2.2 with respect to the risk free interest rate r:

90— N | TKe TN (dy) — Ke T2 \d2)
= Sn(d) %+ TKe "N (dy) — Ke™"Tn(dy) %2

= Sn(dy) % + TKe "N (dy) — Ke " Tn(dy) ST %2

= Sn(dy) (a_l - %) + TKe TN (dy),
Note: (‘% - %) - %(ﬁ_ ﬁ)
= TKe TN (dy).

Greek Rho has the following closed form (Haug, 2009) [15, pg.69]:
Peall = TKe_rTN(dZ) >0

oput = —TKe TN (—dy) <0.

A.4 Greek Theta

Theta is often represented by a negative derivative due to the time decay on
an options value that the Greek represents. Therefore differentiate 2.2 by the
expiration date of the option T...

—9C — —S—aj\ggfll) —rKe "TN (dy) + Ke"TaAg(jzdz

— —Sn (d1)3d1 —rKe " TN (dy) + Ke T (dz)a—2
= —Sn(dl)adl —rKe "N (dp) + Ke*’Tn(d1)%€rT%

= Sn(dr) (%% — 5F) - rKe TN (d).

The derivatives of d; and d, with respect to the expiration date are:

Substituting it into the Theta derivative yields:

Appendix A. Option Greek Derivations 83

X = Su(d)(— he0) — rKe TN (d) = — ST ke TN (dp).

Greek Theta has the following closed form [15, pg.64]:

Ocati = Sg(d\/L) e’rT/\/'(dz).
bpur = —2H 4 rKe TN (—dp).

A.5 Greek Vega

The final Greek is Vega (V) and is the differential of 2.2 with respect to its
volatility o.

AN (d TN (d od - od
9 = SUEA — Ke TR — Sn(dy)5 — Ke ' Tn(dy) 52,

Recalling that n(dy) = n(dl)sf

= Sn(dn)32 — KeTn(d)ge'T = Sn(dr) (32 - %2).
The derivatives of d; and d, are as follows:

= () £ 37

Substituting the above into the Greek calculation yields the closed form so-
lution of Greek Vega [15, pg.50]:

—d2
Veal = Vpur = \/%73_71\/?>0.

84

B Sensitivity Components

B.1 Speed of Adjustment Closed Form

oa(t,T,x) 1
oK - 20k

((VeeF202 + %) (V27 —1) 422 202)

((2 4 202 2% tGK(W*“)(20 (VT2) (V22 1) 2y
X K +20%)% 22e 2 | —

o2

2052 1/ k2202
20x i’K(K“+20 +K)e K o +(x +1) (et‘/K2—2U2,1)+ 2%
Vx2—202 \/K2+2172 V24202))

0?2 ((Vir+202+x) (V227 1) 120/ 1207)

P 20 tox k242024 2 2
vt 2 U (i) e
o2 02 (xk24-202)

+ K

((mﬂ) <et\/m_1> +2m)zfz
In(2)8 (22075 2% 1"

+ 20K

o (VT2 4 &) (VP37 1) 4 2viTT27)

K

22(72+K)
o [10(Vi2+20%+x te"(2 2+1) 2 (V21202 4r)
e varty (e, M) a2

o2

+ 20
<<\/K2 +202 + K) (etVK2—2‘72 — 1) + 2V + 2(72> o

Mb(Tx) 2reV 20
L —
§ V2 + 202 ((\/K2+2(72—|—K> eTVK2 =202 4 \/k2 + 2072 —K)

T (Vi 1207)T V2202 x TV 257 X VTR 2
(Vi2=202 T (\/K2+20’2 T 1> € T Vii1202 1 (26)

(VT2) eV + 2% —x).

Appendix B. Sensitivity Components 85

B.2 Volatility Closed Form

da(t,T,o) 1
Jdo -

2x60

o (V2o i) (V2 102 1) 422077 8 ((V2o2 i) et V27 002 4207 42—)

240 1 KtB(2(72+K2+K)

202 e o?

k0 _ 3
2

X k0 (202 4 K2)
(oot VTR (b4 20) 2 4 20)e 35

+ V2072 (—dxo? = 2) +8x%0% 4 264 In (((V207 2 4 x) (eI 1)
+ 2207+) + (((— 4ot + V2T (- 2w —) — xR —) VIR

— 40t + V202 12 (2607 + ¢) — 4x%0% — i) In (202 + #2)

+ (Voo 2t + ((2- 41 (2))x— 3)02 — ' — 21 (2)°)

+ (—10ct—8In (2))0t + (202 +K2)g<—2t02 —2t) + (- 98t —8In (2)2) 02
— 2% —21n ()it) el VI 4 V202 4 (2004 + (362 + (41n (2) —2)) o 4k
b2 @)+ (— 2t -8 2))0t + (20 +2) (— 2107 -)

+ <— x3t — 8In (2)1{2)(72 —2In (2)K4>.

4o <ez”2‘72+"2 —2t\/202 & K2t V20K 1)

ob(t,T,0) .
S 5.
V202 + «2 <<\/2(72 + K2 4 k) et V202 4r2 4 /202 52 — k>

86

C Continuous Sensitivity Equation
Derivations

C.1 Black-Scholes Continuous Sensitivity Equation
Derivations

Each derivation will begin from the Black-Scholes PDE.

WV 1 ,,0°V oV o
o =50 S 8_52+ SE)S rV, Where: V = V (S, t).

C.1.1 Greek Delta CSE

Differentiate with respect to S:

% % 1zzav v av %
5591 = S35 T39S 55 Tas " as SW (1)

Make the following substitution: A = as ¥ and rearrange to obtain:

A

3 =379 asz+(S5s-

C.1.2 Greek Gamma CSE

As Gamma is by definition the second derivative of Delta. Differentiating
equation C.1 with respect to the underlying will yield the Gamma CSE:

3
PV _ 2V S PV

dV1 25284 82\/ 3V
aszat ~ a5z T 95327 ° 35t T2

+ VSW

Make the following substitution: I' = a 52 Y and rearrange:

o

1 2T) T
TR 5852 (20°S +71S) =< +

2
TS (0“4 r)T.

Appendix C. Continuous Sensitivity Equation Derivations 87

C.1.3 Greek Vega CSE

Considering the Black-Scholes PDE, the option price V is represented as V (S, t).
However, it relies on all the parameters in the formation of the option price,
it can therefore be denoted as V =V (S, t,0,K,).

Now the differentiating Black-Scholes equation with respect to ¢ yields:

2’V 1 2 3V S 0%V a_v+aszaz_v
atoc 27 d00s? 900S ' oo 952"
Making the following substitution: V = and rearranging yields:
W/ 1 2 , 0%V oV 282
or —27 % s t1o%s TV s

C.14 Greek Rho CSE

Differentiate the Black-Scholes PDE with respect to the interest rate r:

V. 1, .,V ?V 9V 9V
arat 27 aras2+rsaras_r§+5$_v'

Make the following substitution: p = and rearrange:

% _

1 ,.,0% dp av
o 205852+rsas rp+SaS V.

C.2 CIR Continuous Sensitivity Equation Deriva-
tions

Each of the following CSEs will be derived using the CIR zero coupon bond
pricing PDE:
oB

1 , 0°B 0B

5 =30 52 + (a— br)§ —7B.

Notably, for each derivation the CSE of the standard CIR PDE defined on
the semi-infinite domain will be calculated. The domain transformation dis-
cussed in 3 will be applied resulting in the domain transformed CSE equation
for the respective sensitivity.

Appendix C. Continuous Sensitivity Equation Derivations 88

C.2.1 Duration CSE

Differentiate the CIR PDE with respect to the interest rate:

°B 1 ,0°B 1 a3B aZB OB 0B
Substituting in D = and rearranging yields:

oD 12827) 1> oD
> =3 82+(+a—br>g—(r+b)2?

Duration CSE Domain Transformation

Consider the following domain transformation identities from 3.8:

oD _ . 20D ¥FD_ 9D LD

= =({1-y) ET (1-y) ay+() W (C.3)

Applying the transformation to the Duration CSE yields:

oD 1, ;PD 1 2 2 2 2 D
E_an(l—y) a7 +<2 (1—y)* —?y(1—y)*+a(l—y) —by(l—y))w

—(%er)D B.

C.2.2 Convexity CSE

In the similar case to Gamma, Convexity can be derived by differentiating
C.2 again with respect to the interest rate.

d°B 1 aB 9°B 9°B oB

5729 — 27 "5 + (c? +a—br)a 3 (2b+r)w—2§.
Making the substitution: C = %273 and rearranging yields:
8(,’ 1 2 02 °C 2 aC 0B

Appendix C. Continuous Sensitivity Equation Derivations

89

Convexity CSE Domain Transformation

Applying the domain transformation identities (3.8) results in:

¢ 1, 3C v 2 %
=50 y(1—y)° 52 +(c*(1—y)’ +a(l—y) —by(l—y))ay
9B
. 2
— (204) —20-y)5

C.2.3 Speed of Adjustment Sensitivity CSE

Differentiating the CIR zero coupon bond PDE with respect to b (k) leads to

the following:

”*B 1, 9°B 9B 0B L:

09t — 27 Tapaz T @ g — ey~

Making the substitution K = ab B and rearranging yields:

ok 1, 9*°K oK 0B
E—E T’W‘i‘(—br)g—rlC—rg

Speed Of Adjustment CSE Domain Transformation

Applying domain transformation to the above CSE yields:

oK 302K oK

ot

dy

1
27
y 0B
B (1 - y) y(1-)@
C.2.4 Volatility Sensitivity CSE

Differentiating with respect to the volatility parameter (¢) yields:

0°B 1 2 0°B 0°B 0°B 9B

300t~ 27 "9092 Tz Ha—br)g = —ra

Applying the following substitution }V = and rearranging yields:

oV

_ 1 R oV 0°B
of 27 o7

+ (a —br)a——rV—I—cTraz

o?y(1—y)’ T (a1 —y)* —by(1—y) —*y(1—y)*) =~

Appendix C. Continuous Sensitivity Equation Derivations 90

Volatility CSE Domain Transformation

Applying domain transformation to the above CSE yields:

a_v_12 _ 382_V _ N2 _ _ 2 _ Za_v
o 20 VA —yrgg T a(—y) =ty —y) =y —y))7

(e 2000l

C.3 Domain Transformation of the Black-Scholes
Equation

Consider the Black-Scholes equation:

WV 1 ,,0°V oV
E—EUS W+TS£—1’V

Using the domain transformation (3.1), the following identities are obtained
through the use of the chain rule:

A A) A AP VPR A AR i 4
(C.4)
WV 1,7 y \2 50V 402V y 20V
7 =37 (1) (F2 -+ 0-vie) (1)) 0 -0y
1, 0%V

v
_ - 201 _ . N22 Y _ 2,201 _ A
=0V =y gy + (W1 —y) — PP A= y) 5 =1V,

Where the payoff function is given by:
V(7)) =mex((755) ~X0)

C.3.1 Transformed Vega CSE

Considering the standard Vega CSE:

)

1 , 0%V oV ,92V
o —2(75 852+r585 rVY +08§ TR

Appendix C. Continuous Sensitivity Equation Derivations 91

Similar transformations to C.4 can be applied to yield:

¥) (0w) l)o-v7h

1-—
—rV—l—a(%)z(—%l —y)3%—‘; +(1 —y)4%27‘2/).

Rearranging yields the transformed Vega CSE defined on a spatial unit inter-
val:

AR A R v (v =) o201 y))—ay ry
%
+oy?(1 - y)z—ayz —20y*(1 = y)=—.

C.3.2 Transformed Rho CSE

Following the same procedure as in chapter D.3.1, consider the Rho CSE:

dp 1 ,.,0% 4 oV
g—zas 852+r5£ rp+5£ V.

Applying similar domain transformation identities to C.4, the following is
obtained:

83 () (- 09T () (0w

—1 ay
v+ (Y)a -y
rp V+(1—y)(1) 3y
Rearranging yields:
dp 122_220 N 2201 aP__ _a
5 =50y (1 y)a—y2+(ry(1 y)—oy (1 y))@ = VHyd-vlg,

92

D C++ Code Appendix

D.1 Crank Nicolson Definitions C++ Code

CNIBVP::CNIBVP(IBvp& source, long NSteps, long JSteps)
: IBvpSolver(source, NSteps, JSteps),

A(vec(Jd + 1)), B(vec(d + 1)), C(vec(I + 1)), F(vec(d + 1)),
. inA(vec(Jd + 1)), inB(vec(J + 1)), inC(vec(Jd + 1)), inF(vec(J + 1))
void CNIBVP::ThomeeScheme()
{ vec check = { 0,1,2,3,4,8}
if (std: Flnd(check begln(), check.end(), ibvp->Signature()) == check.end())
! inhomog01d[@] = 1.0; //(Zero_Coupon Bond)
glse if (ibvp->Signature() == 8)
vecO0ld[@] = 1.0;
}

val_type CNIBVP::NearField()
{

val type 1ftbnd, diffval, convval, reacval;
std::size_t i = 1;
if (1bvp >Signature() == 8)

1ftbnd = ibvp->LftBnd(tnow);

diffval ibvp->Diffusion(xarr[i], tnow);
convval ibvp->Convection(xarr[i], tnow);
reacval = ibvp->Reaction(xarr[i], thow);

}

else

{
1ftbnd = ibvp->inLftBnd(tnow);
diffval = ibvp->inDiffusion(xarr[i], tnow);
convval = ibvp->inConvection(xarr[i], tnow);
reacval = ibvp->inReaction(xarr[i], tnow);

}

Lam = (1ftbnd * k) / h; // Thomee Lambda Term
val_type t1, t2, t3, ptvLam, ntvLam, temp®, templ, temp2, temp3;

tl
t2
t3

0.5 * k * diffval;
8.25 * k * h * convval;
8.5 * k * h2 * reacval;

// First row of matrix
ptvLam = (1.0 + Lam);
ntvLam = (1.0 - Lam);

// Second row of matrix
tempd = t1 - t2;
templ = -h2 - 2 * t1 + t3;

// Create
vec Ldiag
vec Mdiag
vec Udiag

S Matrix components.
{ tempe };

{ ptvLam, templ };

{ ntvLam };

mwonmr-
ju

// Create RHS Matrix

temp2 = ntvLam * vec0ld[@] + ptvLam * vecOld[1];

temp3 = (-t1 + t2) * vec0ld[@] + (-h2 + t1 - t3) * vecOld[1] + (-tl - t2) * vecO0ld[2];
vec RHS = { temp2, temp3 };

GausElim<val_type> matSolver(Ldiag, Mdiag, Udiag, RHS);
vec M = matSolver.Solver();

vecNew[@] = M.at(®);
return M.at(e);

FIGURE D.1: C++ Crank Nicolson Definitions File

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Appendix D. C++ Code Appendix 93

inline val_type CNIBVP::InhomogTerm(val type x, val type t, int i) const
{

int type = ibvp->Signature();
val_type source = ibvp->Inhomog(x, t);

// Inhomogeneous Terms

if (type == 0){ return 0.0; }

else if (type == 1) { return @.0; }
else if (type 2) { return @.0; }
else if (type == 3) // Vega

{

return -source * (1.8 / h2)* (inhomogOld[i - 1] - (2.0 * inhomogOld[i]) + inhomogOld[i + 1]
+ inhomogNew[i - 1] - (2.8 * inhomogNew[i]) + inhomogNew[i + 1]);

}
else if (type == 4) // Rho

return ((inhomogNew[i] - inhomogO0ld[i]) - ((source * ©.5) / h) * (inhomogOld[i + 1] -
inhomog0ld[i - 1] + inhomogNew[i + 1] - inhomogNew[i - 11]));

}
else if (type == 5) // Duration
{

return source * (inhomogNew[i] - inhomogOld[i]);
}
else if (type == 6) // Convexity

return -(source / h) * (inhomogOld[i + 1] - inhomogOld[i - 1] + inhomogNew[i + 1] - inhomogNew[i - 1]);
}
else if (type == 7) // Transformed Delta
{

return source * (1.0 / h2) * (inhomogOld[i - 1] - (2.0 * inhomogOld[i]) + inhomogOld[i + 1]

+ inhomogNew[i - 1] - (2.0 * inhomogNew[i]) + inhomogNew[i + 1]) - ((ibvp->DiffSig(x, t) * ©.5) / h) * (inhomogOld[i + 1] -
inhomog0ld[i - 1] + inhomogNew[i + 1] - inhomogNew[i - 1]);

}
else if (type == 8) { return @.0; }
)

void CNIBVP::calculate()
{ // Tells how to calculate sol. at n+l

// If there exists a source term in the given PDE which is option price based.
// CN will be applied to the standard BlackScholes equation to produce a vector
// of option prices to calculate the RHS.

val_type RHS = ibvp->Inhomog(ibvp->xrange().high(), ibvp->trange().high());

if (RHS != 9)

CrankInhomog();

double t1, t2, t3, Low, Mid, Upp;

for (std::size t i = 1; i < F.size() - 1; ++i)

tl = (8.5 * k * ibvp->Diffusion(xarr[i], tnow));

t2 = 0.25 * k * h * ibvp->Convection(xarr[i], tnow);
t3 = 0.5 * k * h2 * ibvp->Reaction(xarr[i], tnow);
// Coefficients of the U terms

A[i] = t1 - t2; // Lower Diagonal
B[i] = -h2 - 2.0 * t1 + t3; // Domin Diagonal
C[i] = t1 + t2; // Upper Diagonal

// Coefficients of the U terms
double t1A = @©.5 * k * ibvp->Diffusion(xarr[i], tprev);
double t2A = ©.25 * k * h * ibvp->Convection(xarr[i], tprev);

double t3A = 8.5 * k * h2 * ibvp->Reaction(xarr[i], tprev);
Low = -tl1A + t2A;

Mid = -h2 + 2.8 * t1A - t3A;

Upp = -tlA - t2A;

FIGURE D.2: C++ Crank Nicolson Definitions File

157
158
159
160
161
162
163
164
165
166
167
168
169
17@
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

Appendix D. C++ Code Appendix

94

// Approximate Option Price wrt the source term.
F[i] = Low * vecOld[i - 1] + Mid * vecOld[i] + Upp * vecOld[i + 1]
+ ©8.5 * k * h2 * InhomogTerm(xarr[i], tnow, 1);

3

// Define boundary conditions
val_type BCL;
val_type BCR = ibvp->RhtBnd(tnow);

// If statement to calculate boundary condition if CIR process is
int Typ = ibvp->Signature();

if (Typ ==

{ BCL = NearField(); }

else

{ BCL = ibvp->LftBnd(tnow); }

in use.

// Create option template for the double sweep tridiagonal matrix solver
DoubleSweep<double> mySolver(A, B, C, F, BCL, BCR);

vecNew = mySolver.solve();

// Method use to apply CN to BlackScholes PDE to obtain option prices
// in the RHS term.

void CNIBVP::CrankInhomog()

val_type intl, int2, int3, inlLow, inMid, inUpp;

for (std::size t j = 1; j < inF.size() - 1; ++j)

val_type xval = xarr[]j];

intl
int2
int3

0

0.
0.

.5 * k * ibvp->inDiffusion(xval, tnow);
25 * k * h * ibvp->inConvection(xval, tnow);
5 * k * h2 * ibvp->inReaction(xval, tnow);

intl - int2;
-h2 - 2.0 * intl + int3;
intl + int2;

// Coefficients of the U terms
double intlA = ©.5 * k * ibvp->inDiffusion(xval, tprev);
double int2A = 8.25 * k * h * ibvp->inConvection(xval, tprev);

double int3A

inLow
inMid
inUpp

8.5 * k * h2 * ibvp->inReaction(xval, tprev);

-intlA + int2A;
-h2 + 2.0 * intlA - int3A;
-intlA - int2A;

inF[j] = inLow * inhomogOld[j - 1] + inMid * inhomogOld[j]
+ inUpp * inhomogOld[j + 1];

3

double inBCL;
double inBCR = ibvp->inRhtBnd(tnow);

vec check = { 0,1,2,3,4 };
if (std::find(check.begin

inBCL =
else

inBCL =

NearField();

ibvp->inLftBnd(tnow);

for use

(), check.end(), ibvp->Signature()) == check.end())

// Create option template for the double sweep tridiagonal matrix solver
DoubleSweep<double> InSolver(inA, inB, inC, inF, inBCL, inBCR);

inhomogNew

InSolver.solve();

FIGURE D.3: C++ Crank Nicolson Definitions File

Appendix D. C++ Code Appendix 95

D.2 Method Of Lines Definitions C++ Code

MethodOfLines: :MethodOfLines(IBvp& source, long NSteps, long JSteps)

}

ibvp = &source;

// Initiatise Mesh Interval
N = NSteps; J = JSteps;

// Time Components

T = ibvp->trange().spread();

T = ibvp->trange().low();

k = T / static_cast<val_type>(N); // double

// Space Components

h = ibvp->xrange().spread() / static_cast<val_type>(J);
h2 = 1.8 / (h * h);

hmli = 1.0 / (2.0 * h);

// Inhomogeneous vector set to zero vector.
inhomog.resize(J + 1, 0.0);

// Mesh Creation
// Use the mesh method in xrange to create a grid in the x direction
xarr = ibvp->xrange().mesh(3J);

// Array in t direction
tarr = ibvp->trange().mesh(N);

MethodOfLines: :~MethodOfLines()

{1

// Method to create initial conditions and subsequently output IC vector.
state_vec MethodOfLines::IntCnd()

state_vec U(J + 1, 0.0);

// Apply boundaries

U[e] = ibvp->LftBnd(T0@); // Left

U[U.size() - 1] = ibvp->RhtBnd(ibvp->trange().high());

// Fill in Domain
for (std::size_t j = 1; j < xarr.size() - 1; ++3j)

U[j] = ibvp->IntCnd(xarr[j]);

return U;

FIGURE D.4: C++ Method Of Lines Definitions File

Appendix D. C++ Code Appendix

96

state_mat MethodOfLines: :MatIntCnd()
{

// Creates a matrix of zeros (J+1 X 2)
state_mat U(J + 1, 2, ©.0);

// Apply boundaries for both the source and the sensitivity vectors
u(e, @) = ibvp->inLftBnd(0.0); U(U.sizel() - 1, @) = ibvp->inRhtBnd(0.8);
u(e, 1) = ibvp->LftBnd(0.0); U(U.sizel() - 1, 1) = ibvp->RhtBnd(@.0);

// Fill in Domain
for (std::size_t j = 1; j < U.sizel() - 1; ++3j)
{

U(j, @) = ibvp->inIntCnd(xarr[j]);
U(j, 1) = ibvp->IntCnd(xarr[j]);
return U;

// System Methods
/

// Standard MOL procedure
void MethodOflLines::operator()(const state_vec& U, state_vec& dudt,

const val_type t)
// Define Variables
val_type df, cn, rc;
// Size variable
std::size_t pnt = 1;
// Left Boundary Condition
dudt[pnt] = ibvp->Diffusion(xarr[pnt], t) * h2 * (ibvp->LftBnd(t) - 2.8 * U[pnt]
+ U[pnt + 1]) + @.5 * ibvp->Convection(xarr[pnt], t) * (U[pnt + 1]
- ibvp->LftBnd(t)) / h + ibvp->Reaction(xarr[pnt], t) * U[pnt];
// Size variable
pnt = U.size() - 1;
// Right Boundary Condition
dudt[pnt] = ibvp->Diffusion(xarr[pnt], t) * h2 * (U[pnt - 1] - 2.0 * U[pnt]
+ ibvp->RhtBnd(t)) + ©.5 * ibvp->Convection(xarr[pnt], t) * (ibvp->RhtBnd(t)
- U[pnt - 1]) / h + ibvp->Reaction(xarr[pnt], t) * U[pnt];
// Fill in the interior of the domain.
for (std::size_t pnt = 2; pnt < U.size() - 2; pnt += 1)
df = ibvp-»>Diffusion(xarr[pnt], t) * h2;
cn = ibvp-»>Convection(xarr[pnt], t) * hmi;
rc = ibvp->Reaction(xarr[pnt], t);
// Using the simplified MOL D/C/R equation..
dudt[pnt] = (df + cn) * U[pnt + 1] + (-2.8 * df + rc) * U[pnt]
+ (df - cn) * U[pnt - 1];
}
¥

FIGURE D.5: C++ Method Of Lines Definitions File

Appendix D. C++ Code Appendix

97

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
13@
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

//Inhomogeneous term equations require a matrix calculation.
void MethodOfLines::operator()(const state _mat& U, state_mat& dudt, const val_type t)

val_type df, c¢cn, rc;

std::size_t pnt = 1;

dudt(pnt, @) = ibvp->inDiffusion(xarr[pnt], t) * h2 * (ibvp->inLftBnd(t)
- 2.0 * U(pnt, ©) + U(pnt + 1, @)) + 0.5 * ibvp->inConvection(xarr[pnt], t)
* (U(pnt + 1, @) - ibvp->inLftBnd(t)) / h + ibvp->inReaction(xarr[pnt], t)
* U(pnt, @);

pnt = U.sizel() - 2;

dUdt(pnt @) = ibvp->inDiffusion(xarr[pnt], t) * h2 * (U(pnt - 1, @)
2.0 * U(pnt, @) + ibvp->inRhtBnd(t)) + @.5 * ibvp->inConvection(xarr[pnt], t)
* (ibvp- >1nRhtBnd(t) - U(pnt - 1,0)) / h + ibvp->inReaction(xarr[pnt], t
* U(pnt, ©);

// Interior Domain
for (std::size_t pnt = 2; pnt < U.sizel() - 2; pnt += 1)
{

df = ibvp-s>inDiffusion(xarr[pnt], t) * h2;
cn = ibvp-s>inConvection(xarr[pnt], t) * hmi;
rc = ibvp->inReaction(xarr[pnt], t);

dudt(pnt, @) = (df + cn) * U(pnt + 1, @) + (-2.0 * df + rc) * U(pnt, @)
+ (df - cn) * U(pnt - 1, 9);

pnt = 1;

dudt(pnt, 1) = ibvp->inDiffusion(xarr[pnt], t) * h2 * (ibvp->inLftBnd(t)
- 2.9 * U(pnt, 1) + U(pnt + 1, 1)) + @©.5 * ibvp->inConvection(xarr[pnt], t)
* (U(pnt + 1, 1) - ibvp->inLftBnd(t)) / h + ibvp->inReaction(xarr[pnt], t)
* U(pnt, 1) + InhomogTerm(xarr[pnt], t, pnt, Lft, U);

pnt = U.sizel() - 2;
dUdt(pnt 1) ibvp->inDiffusion(xarr[pnt], t) * h2 * (U(pnt - 1, 1)
2.0 * U(pnt, 1) + ibvp->inRhtBnd(t)) + ©.5 * ibvp->inConvection(xarr[pnt], t)

* (ibvp->inRhtBnd(t) - U(pnt - 1, 1)) / h + ibvp->inReaction(xarr[pnt], t
* U(pnt, 1) + InhomogTerm(xarr[pnt], t, pnt, Rht, U);

for (std::size_t pnt = 2; pnt < U.sizel() - 2; pnt += 1)

{
df = ibvp->Diffusion(xarr[pnt], t) * h2;
cn = ibvp->Convection(xarr[pnt], t) * hmil;
rc = ibvp->Reaction(xarr[pnt], t);
dudt(pnt, 1) = (df + cn) * U(pnt + 1, 1) + (-2.8 * df + rc) * U(pnt, 1)
+ (df - cn) * U(pnt - 1, 1
+ InhomogTerm(xarr[pnt], t, pnt, Inner, U);
}

FIGURE D.6: C++ Method Of Lines Definitions File

Appendix D. C++ Code Appendix 98

2085 | inline val_type MethodOfLines::InhomogTerm(val_type x, val_type t, std::size_t pnt,

206 bnd bound, state_mat U) const

207 | {

208

209 // Identify the PDE type...

210 int type = ibvp->Signature();

211 val_type source = ibvp->Inhomog(x, t);

212

213 if (type == @) { return 0.09; }

214 else if (type == 1) { return ©.9; }

215 else if (type == 2) { return ©.9; }

216 else if (type == 3)

217 {

218 if (bound == Lft)

219 {

220 return source * h2 * (ibvp->inLftBnd(t) - 2.8 * U(pnt, @) + U(pnt + 1, 8));

221 }

222 else if (bound == Rht)

223 {

224 return source * h2 * (U(pnt - 1, ©) - 2.9 * U(pnt, @) + ibvp->inRhtBnd(t));

225 }

226 else

227 {

228 return source * h2 * (U(pnt - 1, @) - 2.0 * U(pnt, @) + U(pnt + 1, @));

229 }

230 }

231 else if (type == 4)

232 {

233 if (bound == Lft)

234 {

235 return source * hml * (ibvp->inLftBnd(t) + U(pnt + 1, @)) - U(pnt, 0);

236 }

237 else if (bound == Rht)

238 {

239 return source * hml * (U(pnt - 1, ©) + ibvp->inRhtBnd(t)) - U(pnt, ©);;

240 }

241 else

242 {

243 return source * hml * (U(pnt - 1, ©) + U(pnt + 1, ©)) - U(pnt, 9);

244 }

245 }

246 else if (type == 9) // hml = 1/2h h2 = 1/h*2

247

248 if (bound == Lft)

249

250 return (source * (1.8 - x) * (1.8 - x) * h2 * (U(pnt + 1, @) - 2 * U(pnt, ©) + ibvp-
>inLFtBnd(t)))

251 - 2.0 * source * (1.0 - x) * hml * (U(pnt + 1, @) - ibvp->inLftBnd(t));

252 }

253 else if (bound == Rht)

254 {

255 return (source * (1.8 - x) * (1.8 - x) * h2 * (ibvp->inRhtBnd(t) - 2 * U(pnt, @) + U(pnt -
1, 9)))

256 - 2.0 * source * (1.0 - x) * hml * (ibvp->inRhtBnd(t) - U(pnt - 1, 0));

257 }

258 else // source = sig y~2

259 {

260 return (source * (1.0 - x) * (1.0 - x) * h2 * (U(pnt + 1, @) - 2 * U(pnt, ©) + U(pnt - 1,
8)))

261 - 2.0 * source * (1.8 - x) * hml * (U(pnt + 1, @) - U(pnt - 1, @));

262 }

263 }

264 else if (type == 10)

265 {

266 if (bound == Lft)

267 {

268 return source * hml * (U(pnt + 1, @) - ibvp->inLftBnd(t)) - U(pnt, @);

269 }

270 else if (bound == Rht)

271 {

272 return source * hml* (ibvp->inRhtBnd(t) - U(pnt - 1, @)) - U(pnt, @);

273 }

FIGURE D.7: C++ Method Of Lines Definitions File

Appendix D. C++ Code Appendix 99

D.3 Black-Scholes Forward AD C++ Code

4 | #include <boost/math/differentiation/autodiff.hpp>
5| using namespace boost::math::differentiation;
6
7| class BsForwardAD
81 {
9| public:
10 BsForwardAD(char type, double K, const double price, const double sigma, const double tau,
11 const double rate) : variable(K), target(price)
12 {
13 Calculate(type, K, price, sigma, tau, rate);
14 }
15
16 void Calculate(char type, double K, const double price, const double sigma, const double tau,
17 const double rate)
18 {
19 auto const variables = make_ftuple<double, 2, 1, 1, 1>
20 (price, sigma, tau, rate);
21 auto const& underlying = std::get<@>(variables);
22 auto const& sig = std::get<l>(variables);
23 auto const& T = std::get<¢2>(variables);
24 auto const& r = std::get<3>(variables);
25
26 auto output = [](char type, auto target, auto sensl, auto sens2, auto sens3,
27 auto sens4, auto sens5)
28 {
29 std::cout << "\n\n======= === === === ====\n"};
30 std::cout << " Forward AD\n";
31 std::cout << " === === === === \n\n";
32 std::cout << std::setprecision(std::numeric_limits<double>::digits10)
33 << "S = " << target << ", Delta: " << sensl << "\n"
34 << "S = " << target << ", Gamma: " << sens2 << "\n"
35 << "S = " << target << ", Theta: " << sens3 << "\n"
36 << "S = " << target << ", Rho: " << sens4 << "\n"
37 << "S = " << target << ", Vega: " << sens5 << "\n";
38 1
39
40 if (type == 'C")
41 {
42 auto const call_price = BlackScholesPrice('C", variable, underlying, sig, T, r);
43 double const adDelta = call price.derivative(l, 0, @, 0);
44 double const adGamma = call_price.derivative(2, 0, @, 0);
45 double const adTheta = -call_price.derivative(o, 0, 1, 0);
46 double const adRho = call_price.derivative(o, ©, 0, 1);
a7 double const adVega = call_price.derivative(e, 1, 0, 0);
48 output(type, price, adDelta, adGamma, adTheta, adRho, adVega);
49 }
50 else
51 {
52 auto const put_price = BlackScholesPrice('P', variable, underlying, sig, T, r);
53 double const adDelta = put_price.derivative(1, @, @, ©);
54 double const adGamma = put_price.derivative(2, @, @, ©);
55 double const adTheta = -put_price.derivative(@, o, 1, @);
56 double const adRho = put_price.derivative(@, 0, 0, 1);
57 double const adVega = put_price.derivative(®, 1, 0, 9);
58 output(type, price, adDelta, adGamma, adTheta, adRho, adVega);
59 }
60 }
61

FIGURE D.8: C++ Black-Scholes Forward AD Header File

Appendix D. C++ Code Appendix

100

template<typename Price, typename Sigma, typename Tau, typename Rate>

promote<Price, Sigma, Tau, Rate> BlackScholesPrice(char cp, double K, Price const& S,
Sigma const& sigma, Tau const& tau, Rate const& r)

{
auto const d1 = (log(S / K) + (r + sigma * sigma / 2) * tau) / (sigma * sqgrt(tau));
auto const d2 = (log(S / K) + (r - sigma * sigma / 2) * tau) / (sigma * sqgrt(tau));
if (ep == 'C")
{

return S * Phi(dl) - exp(-r * tau) * K * Phi(d2);
}
else if (cp == 'P')
{
return exp(-r * tau) * K * Phi(-d2) - S * Phi(-dl1);

}

template <typename X>

X Phi(X const& x)
return 0.5 * erfc(-boost::math::constants::one_div_root_two<X>() * x);

private:
double variable;
double target;
3

FIGURE D.9: C++ Black-Scholes Forward AD Header File

E MATLAB Code Appendix

E.1 MATLAB Crank Nicolson Code

classdef CirCrank

% Thesis parameters

% a=0.048 % T = 0.25 % sig = 0.4

% b = 0.08 % r = 0.08

properties (Access = private)
interest; T; J; N % CIR Parameters
h2; k % Step Parameters
tl; t2; t3; t4 % Crank Components
pLam; nLam % Box Method Components
A, B % System Matrices

end

properties (Access = public)

spatialVec s X—-axis vector
priceMesh % Mesh containing bond prices
h % Step size
end
methods
function obj = CirCrank(a, b, r, T, sig, J, N)
% Define Step Parameters
obj.J = J;
obj.N = N;
obj.interest = r;
Objlk = T/N;
obj.h =1/ (1+1);
obj.h2 = obj.h*obj.h;
obj = initMatrix(obj); % Initialise vectors/matricies
obj = initPDE(obj, sig, a, b); % Initialise PDE components
obj = initBox(obj, a); % Initialise Box components
end
end

methods (Access = private)

% Function used to initialise wvectors used in Crank Nicolson
function obj = initMatrix(obj)

% Create pricing mesh (NxJ matrix) (preallocate memory)
obj.priceMesh(1:0bj.J+1, 1:0bj.N+1) = zeros('int8');

% Create spatial vector
obj.spatialVec = @:obj.h:obj.1/(0bj.J + 1);

% Initialise values in pricing mesh
obj.priceMesh(end, :)} = @; % Far-field Boundary

% Intial Condition applied to near-field and domain values.
obj.priceMesh(:, 1) = 1;

end

% Function used to initialise the PDE terms in the calculation

FIGURE E.1: C++ CN MATLAB Definitions File

101

Appendix E. MATLAB Code Appendix 102

function obj = initPDE(obj, sig, a, b)

% Diffusion Term
A diff = @.5%sigksig.* obj.spatialVec.xpower((1l-obj.spatialvVec),3) * obj.k/obj.v¢
2;

% Convection Term

conv = @.5%(obj.k/obj.h)*(a.*power(1.0-obj.spatialVec,2) - b.xobj.spatialVec.v¢
*(1.0-obj.spatialVec) - sigksig.*obj.spatialVec.*power(l.0-obj.spatialvVec,2));

% Reaction Term

reac = - obj.k.* obj.spatialVec./(1l-obj.spatialVec);

% Create Crank Terms (associated to RHS of matrix)

obj.tl = @.5kconv - @.5%diff;

obj.t2 = 1.0 + diff - @.5%reac;
obj.t3 = —(0.5kconv + 0.5%diff);
obj.t4 = 1.0 - diff + 0.5%reac;

end

% Function to initialise Thomée Method components
function obj = initBox(obj, a)

% Thomée Components
obj.pLam = 1 + (axobj.k)/obj.h; %[1,1]
obj.nLam = 1 - (axobj.k)/obj.h; %[1,2]

% Initialise Crank matrix LHS using above components

obj.A(1,1) = obj.pLam;
obj.A(1,2) = obj.nLam;
% Initialise Crank matrix RHS using above components
obj.B(1,1) = obj.nLam;
obj.B(1,2) = obj.pLam;
end
end
methods

function [BondPrice, BondVec, PriceMatrix] = Result(obj)

% Assign Crank matrices associated near-field condition
obj.A(obj.J+1, obj.J+1) =1
obj.B(obj.J+1, obj.J+1l) = 0

H
H
% Assign solution

% Assign t1, t2, t3 to LHS Crank Matrix A
for j = 2:1:0bj.J

obj.A(j, j-1) = obj.t1(j); % lower diagonal
obj.A(j, j) = obj.t2(j); % diagonal
obj.A(j, j+1) = obj.t3(j); % upper diagonal

end

% Assign t1, t4, t3 to RHS Crank Matrix B

for j = 2:1:0bj.J

FIGURE E.2: C++ CN MATLAB Definitions File

Appendix E. MATLAB Code Appendix 103

end

end

obj.B(j, j-1) = -obj.t1(j); % lower diagonal
obj.B(j, j) = obj.t4(j); % diagonal
obj.B(j, j+1) = —obj.t3(j); % upper diagonal

end
bndB(1:0bj.J+1,1) = @; % Create bnd vector for new vector cnd.

% Take the pricing vector and iterate along each time step
for n = 1l:0bj.N

% Update boundaries after each iteration
bndB(end) = obj.priceMesh(end,n+1);

% Solver system using updated boundary and bond
% approximations
obj.priceMesh(:,n+1) = obj.A\(obj.Bxobj.priceMesh(:,n)+bndB);

end

% Interpolate the results to obtain the bond price for a target
% interest rate (i.e 0.@8). First transform the variable for

% compatibility on transformed domain.

% Duffy transform identity
y = obj.interest / (obj.interest + 1.0);

% Interpolate
BondPrice = interpl(obj.spatialVec, obj.priceMesh(:,end), y);

% Used in CSE Calculations

PriceMatrix = obj.priceMesh;

BondVec = obj.priceMesh(:,end);
end

% Takes in a target interest value and returns approximations along
% the time interval.

function [ThetaHoldResult] = TimeVec(obj, PriceMatrix)
% Identify target location
y = obj.interest / (obj.interest + 1.0);
location = round(y / obj.h);
ThetaHoldResult = PriceMatrix(location, :);

end

FIGURE E.3: C++ CN MATLAB Definitions File

Appendix E. MATLAB Code Appendix

104

E.2 MATLAB Alternating Direction Explicit Code

classdef CirADE

% Call constructor with required CIR parameters.
% Call Result to obtain results.

% Thesis parameters

% a = 0.048 % T = 0.25 % sig = 0.4

% b = 0.08 % r =0.08

properties (Access = private)
interest; T; J; N % CIR Parameters
h2; k % Step Parameters
U; uold; v; vold % Create ADE solution vectors
diff; conv; reac % PDE d/c/r components
denoml; denom2 % ADE up/downwind denominators
pLam; nLam; sqr % Box Method Components

end

properties (Access = public)
spatialVec % X-axis vector
priceMesh % Mesh containing bond prices
h % Step parameter

end

methods

function obj = CirADE(a, b, r, T, sig, J, N)
% Define Step Parameters

obj.J = J;

obj.N = N;
obj.interest = r;
obj.k = T/N;

obj.h =1/ (J+1);

obj.h2 = obj.hxobj.h;

obj = initMatrix(obj); % Initialise vectors/matricies
obj = initPDE(obj, sig, a, b); % Initialise PDE components
obj = initBox(obj, a); % Initialise Box components
end
end

methods (Access = private)

function obj = initMatrix(obj)
% Create pricing mesh (NxJ matrix) (preallocate memory)
obj.priceMesh(1l:0bj.J+1, 1:0bj.N+1) = zeros('int8');

% Create spatial vector
obj.spatialVec = @:obj.h:(obj.l3/(obj.J + 1));

% Initialise values in pricing mesh.
obj.priceMesh(end, :) = @; % Far-field Boundary

% Intial Condition applied to near-field and domain values.
obj.priceMesh(:, 1) = 1;

% Initialise the crank nicolson solution vectors

FIGURE E.4: C++ CN MATLAB Definitions File

Appendix E. MATLAB Code Appendix 105

obj.U(l:0bj.J+1) = zeros;
obj.V(1l:i0obj.J+1) = zeros;

% Apply initial and boundary conditions to old solution vecs
obj.uU0ld(1,0bj.J+1) = @; % Far-field

obj.v0old(1,0bj.J+1) = @; % Far-field
obj.UOld(1:0bj.])
obj.vold(1l:o0bj.J)

1;

1;

end
function obj = initPDE(obj, sig, a, b)

% Diffusion Term

obj.diff = 0.5%sig#sig.* obj.spatialVec.+*power((1l-obj.spatialVec),3) * obj.¥
k/obj.h2;

% Convection Term

obj.conv = 0.5k(obj.k/obj.h)*(a.*power(1l.0-0obj.spatialVec,2) - b.xobj.¥
spatialVec.*(1.0-obj.spatialVec) - sigksig.*obj.spatialVec.*power(1l.0-obj.spatialVec,2));

% Reaction Term

obj.reac = - obj.k.* obj.spatialVec./(1-obj.spatialVec);

% Define the up/downwind denominators (find use in box scheme)
obj.denoml = 1.0 - obj.conv + obj.diff - obj.reac;
obj.denom2 = 1.0 + obj.conv + obj.diff - obj.reac;

end

function obj = initBox(obj, a)

obj.pLam = 1 + (a%obj.k)/obj.h; %[1,1]

% Thomée Components
obj.nLam = 1 - (a*obj.k)/obj.h; %[1,2]

% Form 2x2 matrix (Using upwind)
obj.sqr = [obj.pLam, obj.nLam; obj.conv(2) - obj.diff(2), obj.denoml(2)];

end
end

methods
function[BondPrice, BondVec, PriceMatrix] = Result(obj}

% Iterate through each time step, calculating upwind and
% downwind equation values in opposing spatial directions.

% Start from 2 as the first step has been populated using
% initial and boundary conditions.

for n = 2:1:0bj.N+1
% Assign far-field boundary condition
obj.U(obj.J+1) = obj.priceMesh(end,n);
obj.V(obj.J+1) = obj.priceMesh(end,n);

[(obj.nLamkobj.U0Old(1)+obj.pLam*obj.U0ld(2)); (1-obj.diff(2)-obj.«
conv(2) }*obj. UOld(2)+(obJ diff(2)+obj.conv(2))#*obj.u01d(3)];

FIGURE E.5: C++ CN MATLAB Definitions File

Appendix E. MATLAB Code Appendix 106

% Solve system and apply boundary conditions
NearBnd = obj.sqr\b_vec;

obj.U(1) = NearBnd(1); obj.U(2) = NearBnd(2);
obj.V(1) = NearBnd(1); obj.V(2) = NearBnd(2);
% Upwind

for j = 3:1l:0bj.J

obj.U(j) = (1 - obj.diff(j) - obj.conv(j))*obj.u0ld(j) + (obj.diff(j)«
- obj.conv(j))*obj.U(j-1)+(obj.diff(j) + obj.conv(j))*obj.u0ld(j+1);
obj.U(j) = obj.U(j)/obj.denoml(j);

end

% Downwind
for j = obj.J:-1:3

obj.V(j) = (1 - obj.diff(j} + obj.conv(j))*obj.vOld(j) + (obj.diff(j)¥
- obj.conv(j))*obj.vold(j-1)+(obj.diff(j)+obj.conv(j))*obj.V(j+1);
obj.V(j) = obj.V(j)/obj.denom2(j);

end

% Average, fill price mesh column with averaged values.
obj.priceMesh(:,n) = @.5%(obj.V + obj.U);

% Set new approximations to the old solution vector.
obj.uU0ld = obj.priceMesh(:,n);
obj.vold = obj.priceMesh(:,n);

end

% Intepolate to obtain final wvalues
y = obj.interest / (1.@ + obj.interest);

% Set solution variables.
BondPrice = interpl(obj.spatialVec, obj.priceMesh(:,end)}, y);
BondVec = obj.priceMesh(:,end);
PriceMatrix = obj.priceMesh;
end
end
end

FIGURE E.6: C++ CN MATLAB Definitions File

107

References

[1] Rafael Abreu, Daniel Stich, and José Morales. “On the generalization of
the Complex Step Method”. Journal of Computational and Applied Math-
ematics 241 (2013), pp. 84-102. 1SSN: 0377-0427. DOI: https://doi.org/
10.1016/j.cam.2012.10.001. URL: http://www.sciencedirect.com/
science/article/pii/S0377042712004207 (cit. on pp. 28, 67).

[2] K. Ahnertand M. Mulansky. odeint: Integrate Functions. 2015. URL: https:
/ / www . boost . org /doc/1libs/1_65_0/1libs /numeric / odeint /
doc/html /boost _numeric _odeint/odeint_in_detail/integrate_
functions.html (visited on 08/22/2019) (cit. on p. 54).

[3] F Black and M. Scholes. “The Pricing of Options and Corporate Lia-
bilities”. The Journal of Political Economy, 81 (3 June 1973), pp. 637-654.
URL: http://www. jstor.org/stable/1831029 (visited on 08/07/2019)
(cit. on p. 2).

[4] M. Buckova Z. Ehrhardt and Gunther M. “Fichera Theory and Its Ap-
plication in Finance”. Progress in Industrial Mathematics at ECMI 2014.
Vol. 22. Springer, Cham, July 2016. URL: https://doi.org/10.1007/
978-3-319-23413-7_13 (cit. on pp. 10, 11).

[6] Zuzana Buckova, Matthias Ehrhardt, and Michael Giinther. “Alternat-
ing direction explicit methods for convection diffusion equations”. 84
(Sept. 2015), pp. 309-325 (cit. on pp. 17, 18).

[6] S.Byrneand A. Greenwell. Automatic Differentiation for the Greeks. 2017.
URL: https://wilmott.com/automatic-for-the-greeks/ (visited on
08/22/2019) (cit. on p. 29).

[7] M. Choudhry. Frequently Asked Questions in Quantitative Finance: Anal-
ysis and Valuation. 1st ed. Bloomberg Press, 2005. URL: www.bloomberg.
com/books (cit. on pp. 6, 7).

[8] J. Cox]J. Ingersoll and S. Ross. “A Theory of the Term Structure of In-
terest Rates”. Econometrics, 53 (2 Mar. 1985), pp. 385-407. URL: http:
//www . jstor . org/stable/ 1911242 (visited on 08/09/2019) (cit. on
pp- 5, 6).

[9] J. Dormand and P. Prince. “A family of embedded Runge-Kutta formu-
lae”. Journal of Computational and Applied Mathematics 6.1 (1980), pp. 19—
26. ISSN: 0377-0427. DOL: https://doi.org/10.1016/0771-050X(80)
90013-3. URL: http://www.sciencedirect.com/science/article/
pii/0771050X80900133 (cit. on pp. 21, 22).

[10] D. Duffy. Financial Instrument Pricing Using C++. 2nd ed. John Wiley
Sons, 2018. URL: https://www.wiley.com/en-gb/Financial+Instrument+
Pricing+Using+C++, +2nd+Edition-p-9781119170488 (cit. on pp. 14,
18, 41, 46, 49, 51, 59).

https://doi.org/https://doi.org/10.1016/j.cam.2012.10.001
https://doi.org/https://doi.org/10.1016/j.cam.2012.10.001
http://www.sciencedirect.com/science/article/pii/S0377042712004207
http://www.sciencedirect.com/science/article/pii/S0377042712004207
https://www.boost.org/doc/libs/1_65_0/libs/numeric/odeint/doc/html/boost_numeric_odeint/odeint_in_detail/integrate_functions.html
https://www.boost.org/doc/libs/1_65_0/libs/numeric/odeint/doc/html/boost_numeric_odeint/odeint_in_detail/integrate_functions.html
https://www.boost.org/doc/libs/1_65_0/libs/numeric/odeint/doc/html/boost_numeric_odeint/odeint_in_detail/integrate_functions.html
https://www.boost.org/doc/libs/1_65_0/libs/numeric/odeint/doc/html/boost_numeric_odeint/odeint_in_detail/integrate_functions.html
http://www.jstor.org/stable/1831029
https://doi.org/10.1007/978-3-319-23413-7_13
https://doi.org/10.1007/978-3-319-23413-7_13
https://wilmott.com/automatic-for-the-greeks/
www.bloomberg.com/books
www.bloomberg.com/books
http://www.jstor.org/stable/1911242
http://www.jstor.org/stable/1911242
https://doi.org/https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/https://doi.org/10.1016/0771-050X(80)90013-3
http://www.sciencedirect.com/science/article/pii/0771050X80900133
http://www.sciencedirect.com/science/article/pii/0771050X80900133
https://www.wiley.com/en-gb/Financial+Instrument+Pricing+Using+C++,+2nd+Edition-p-9781119170488
https://www.wiley.com/en-gb/Financial+Instrument+Pricing+Using+C++,+2nd+Edition-p-9781119170488

REFERENCES 108

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D Duffy. “Unconditionally Stable and Second-Order Accurate Explicit
Finite Difference Schemes Using Domain Transformation: Part I One-
Factor Equity Problems”. Sept. 2009. URL: https://ssrn.com/abstract=
1552926 (cit. on pp. 10, 17).

Erich Gamma et al. Design Patterns: Elements of Reusable Object-oriented
Software. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1995. 1SBN: 0-201-63361-2 (cit. on p. 41).

E. Gibson R. Lhabitant and D. Talay. “Modeling the Term Structure of
Interest Rates: A Review of the Literature”. Foundations and Trends in
Finance 5 (2010), pp. 1-156. URL: http://dx . doi . org/10 . 1561/
0500000032 (visited on 08/09/2019) (cit. on p. 17).

S. Gleadall. Option Greeks For Traders Part 1: Delta, Vega Theta. 1st ed.
Volcube, 2014. URL: http://www.volcube.com (cit. on p. 4).

E. Haug. The Complete Guide to Option Pricing Formulas. 2nd ed. McGraw-
Hill, 2009 (cit. on pp. 80-83).

T Kimura. “On Dormand-Prince Method” (2009). URL: http://depa.
fquim.unam.mx/amyd/archivero/DormandPrince_19856.pdf (visited
on 08/22/2019) (cit. on pp. 21, 22).

F Lu. “Alternating Direction Explicit Methods for Zero-coupon Bond
Pricing in the Cox-Ingersoll-Ross Model”. Supervisor: Daniel J. Duffy.
MA thesis. University of Birmingham: Birmingham Business School,
Sept. 2014 (cit. on pp. 10, 14-16, 18, 53).

S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and
Designs. Addison-Wesley Professional Computing Series. Pearson Ed-
ucation, 2005. I1SBN: 9780132702065. URL: https://books.google.co.
uk/books?id=Qx50yB49poYC (cit. on p. 29).

Matthew Pulver. autodiff: Automatic Differentiation C++ Library. https:
//github.com/pulver/autodiff. 2019 (cit. on p. 60).

E. Radkevic and O. Oleinik. Second Order Equations with Non-negative
Characteristic Form. 1st ed. American Mathematical Society, 1973 (cit.
onp. 11).

W. Schiesser and G. Griffiths. A Compendium of Partial Differential Equa-
tion Models: Method of Lines Analysis with Matlab. 1st ed. New York, NY,
USA: Cambridge University Press, 2009. ISBN: 0521519861, 9780521519861
(cit. on pp. 20, 21).

W. Squire and G. Trapp. “Using Complex Variables to Estimate Deriva-
tives of Real Functions”. SIAM Rev. 40.1 (Mar. 1998), pp. 110-112. ISSN:
0036-1445. DOI: 10.1137/S003614459631241X. URL: http://dx.doi.
org/10.1137/5003614459631241X (cit. on p. 28).

J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. 2nd ed. Springer-
Verlag New York, 1993 (cit. on pp. 22, 26, 27).

B. Towler and R. Yang. “Numerical stability of the classical and the
modified Saul’yev’s finite-difference methods”. Computers Chemical En-
gineering 2.1 (1978), pp. 45-51. 1SSN: 0098-1354. DOI: https://doi.org/
10.1016/0098-1354(78)80006-4. URL: http://www.sciencedirect.
com/science/article/pii/0098135478800064 (cit. on p. 18).

https://ssrn.com/abstract=1552926
https://ssrn.com/abstract=1552926
http://dx.doi.org/10.1561/0500000032
http://dx.doi.org/10.1561/0500000032
http://www.volcube.com
http://depa.fquim.unam.mx/amyd/archivero/DormandPrince_19856.pdf
http://depa.fquim.unam.mx/amyd/archivero/DormandPrince_19856.pdf
https://books.google.co.uk/books?id=Qx5oyB49poYC
https://books.google.co.uk/books?id=Qx5oyB49poYC
https://github.com/pulver/autodiff
https://github.com/pulver/autodiff
https://doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1137/S003614459631241X
http://dx.doi.org/10.1137/S003614459631241X
https://doi.org/https://doi.org/10.1016/0098-1354(78)80006-4
https://doi.org/https://doi.org/10.1016/0098-1354(78)80006-4
http://www.sciencedirect.com/science/article/pii/0098135478800064
http://www.sciencedirect.com/science/article/pii/0098135478800064

REFERENCES 109

[25]

[26]
[27]
[28]

[29]

J. Waldén. “On the approximation of singular source terms in differen-
tial equations”. Numerical Methods for Partial Differential Equations 15.4
(1999), pp. 503-520. DOT: 10 . 1002 / (SICI) 1098 - 2426 (199907) 15 :
4<503::AID-NUM6>3.0.C0;2-Q. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/%5C%28SICI}%5C%291098-2426%5C%28199907%
5C%2915%5C%3A47%5C%3C503%5C%3A%5C)h3AAID-NUME%5C%3E3 . 0. C0%5CY%
3B2-Q (cit. on p. 33).

N Webber and]. James. Frequently Asked Questions in Quantitative Fi-
nance: Analysis and Valuation. 1st ed. John Wiley Sons, 2000 (cit. on p. 7).
P. Wilmott. Frequently Asked Questions in Quantitative Finance. 2nd ed.
John Wiley Sons, 2009. URL: https://www.wilmott.com (cit. on p. 2).
P. Wilmott. Paul Wilmott introduces Quantitative Finance. 2nd ed. John
Wiley Sons, 2007. URL: https://www.wilmott.com (cit. on p. 6).

S. Wilmott P. Howison and J. Dewynne. The Mathematics of Financial
Derivatives: A Student Introduction. 1st ed. Press Syndicate of the Uni-
versity of Cambridge, 1995 (cit. on p. 12).

https://doi.org/10.1002/(SICI)1098-2426(199907)15:4<503::AID-NUM6>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1098-2426(199907)15:4<503::AID-NUM6>3.0.CO;2-Q
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291098-2426%5C%28199907%5C%2915%5C%3A4%5C%3C503%5C%3A%5C%3AAID-NUM6%5C%3E3.0.CO%5C%3B2-Q
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291098-2426%5C%28199907%5C%2915%5C%3A4%5C%3C503%5C%3A%5C%3AAID-NUM6%5C%3E3.0.CO%5C%3B2-Q
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291098-2426%5C%28199907%5C%2915%5C%3A4%5C%3C503%5C%3A%5C%3AAID-NUM6%5C%3E3.0.CO%5C%3B2-Q
https://onlinelibrary.wiley.com/doi/abs/10.1002/%5C%28SICI%5C%291098-2426%5C%28199907%5C%2915%5C%3A4%5C%3C503%5C%3A%5C%3AAID-NUM6%5C%3E3.0.CO%5C%3B2-Q
https://www.wilmott.com
https://www.wilmott.com

	Abstract
	Acknowledgements
	Introduction
	Financial Instruments and Sensitivities
	Black-Scholes Model
	Black-Scholes Sensitivities
	Cox-Ingersoll-Ross (CIR) Process
	CIR Bond Sensitivities

	PDE Finite Difference Methods
	Motivation
	Domain Transformation
	Fichera Theory
	Finite Difference Grid (Mesh)

	Crank Nicolson FDM Method
	Generalised Crank Nicolson
	Crank Nicolson Black-Scholes Implementation
	Crank Nicolson CIR PDE Implementation
	Thomée Scheme Crank Nicolson

	Alternating Direction Explicit
	Generalised Alternating Direction Explicit
	B&C ADE Black-Scholes Implementation
	B&C ADE CIR PDE Implementation
	Thomée Scheme ADE

	Method of Lines
	Generalised Method of Lines
	Runge Kutta Dormand-Prince ODE Method

	MOL Black-Scholes Implementation
	MOL CIR PDE Implementation

	Sensitivity Approximation Methods
	Divided Difference Method
	Cubic Spline Interpolation
	Complex Step Method
	Forward Automatic Differentiation
	Dual Numbers

	Continuous Sensitivity Equation (CSE)
	Black-Scholes Continuous Sensitivity Equations
	Delta CSE
	Gamma CSE
	Vega CSE
	Rho CSE

	Cox-Ingersoll-Ross Continuous Sensitivity Equations
	Duration CSE
	Convexity CSE
	Speed of Adjustment CSE
	Volatility CSE

	Boundary Conditions: Further Research Opportunity?
	Duration CSE
	Convexity CSE
	Speed of Adjustment CSE
	Volatility CSE
	Possible Issues...

	Code Implementation
	C++ Code Design
	C++ Definer Code Section
	Option Class
	PDE Classes
	Initial Boundary Value Problem Class

	C++ Solver Code Section

	C++ Numerical Method Implementation
	C++ Crank Nicolson
	C++ ADE Implementation
	C++ Method Of Lines Implementation

	C++ Implementation: Approximation Methods
	Divided Difference
	Cubic Spline Interpolation
	Forward Automatic Differentiation
	Complex Step Method

	Coding Results
	Closed Form Solutions
	Forward AD, CSM & Closed Form Solutions
	Black-Scholes Numerical Method Approximations
	Black-Scholes Option Price
	Divided Difference Sensitivity Approximation
	Cubic Spline Sensitivity Approximation
	Continuous Sensitivity Equations

	Cox-Ingersoll-Ross Numerical Approximations

	Option Greek Derivations
	Greek Delta
	Greek Gamma
	Greek Rho
	Greek Theta
	Greek Vega

	Sensitivity Components
	Speed of Adjustment Closed Form
	Volatility Closed Form

	Continuous Sensitivity Equation Derivations
	Black-Scholes Continuous Sensitivity Equation Derivations
	Greek Delta CSE
	Greek Gamma CSE
	Greek Vega CSE
	Greek Rho CSE

	CIR Continuous Sensitivity Equation Derivations
	Duration CSE
	Duration CSE Domain Transformation

	Convexity CSE
	Convexity CSE Domain Transformation

	Speed of Adjustment Sensitivity CSE
	Speed Of Adjustment CSE Domain Transformation

	Volatility Sensitivity CSE
	Volatility CSE Domain Transformation

	Domain Transformation of the Black-Scholes Equation
	Transformed Vega CSE
	Transformed Rho CSE

	C++ Code Appendix
	Crank Nicolson Definitions C++ Code
	Method Of Lines Definitions C++ Code
	Black-Scholes Forward AD C++ Code

	MATLAB Code Appendix
	MATLAB Crank Nicolson Code
	MATLAB Alternating Direction Explicit Code

