
UNIVERSITY OF BIRMINGHAM 
 

BIRMINGHAM BUSINESS SCHOOL 
 

2019-2020 
 

MSc DISSERTATION COVER SHEET 
 
 

I confirm that I have read and understood the regulations on plagiarism* and have acknowledged 
the work of others that I have included in this dissertation. 
 
Please read the following statement and tick ONE box regarding permission, or denial thereof, to 
view your dissertation by other students: 
 

- I AGREE to allow my dissertation to be seen by future students.  

 
By signing this form, I agree to allow access to students of the Business School, as part of the 
University of Birmingham, to view my dissertation, or part thereof, for guidance as an example of 
good practice. For its part, the University will grant access to Birmingham Business School students 
as it deems appropriate, but in so doing forbids anyone to copy or use my dissertation in any other 
way or for any other purpose. 
I understand that my dissertation will be available to view via Canvas and that any personal 
references will be anonymised. 
I further understand that the University has no control over the actions of third parties, and should 
I have any concerns, my permission may be withdrawn, at any time, by advising the Business School 
in writing. 
 

- I DO NOT AGREE to allow my dissertation to be seen by future students. □  
 

Print Name: Chun Kiat ONG 
 
Student ID: 2031611 
 
Date:  9th September 2020 
-------------------------------------------------------------------------------------------------------------- 
 
*Plagiarism, in this context, is the reproduction of material from books and articles without 
acknowledgement.  It is the act of passing off another person’s work as your own, copying a fellow 
student’s work or reproducing work submitted by a past student.  Such actions are seen as a form 
of cheating and, as such, are penalised by examiners according to their extent and gravity. 
 
You should not quote existing work without quotation marks and appropriate referencing.  An 
attempt to present the work of someone else as your own may lead to your dissertation being 
awarded a mark of zero.  You are required to state the full references of all sources that you use.  If 
quotations are made, they must be explicitly and fully referenced, including stating the relevant 
page number(s).  You will be penalised very severely if examiners find that you have presented a 
section of a book, an article or a paper without appropriate referencing.  If you are not sure about 
how to quote an existing work, please ask for advice from your supervisor. 



UNIVERSITY OF BIRMINGHAM

MASTER OF SCIENCE THESIS

The Performance of Artificial
Neural Networks on Rough Heston

Model

Author:
Chun Kiat ONG

(ID:2031611)

Supervisor:
Dr. Daniel J.DUFFY

A thesis submitted in partial fulfillment of the requirements
for the degree of MSc Mathematical Finance

in the
Birmingham Business School

9th September, 2020

https://www.birmingham.ac.uk
https://www.birmingham.ac.uk/schools/business




iii

Declaration of Authorship
I, Chun Kiat ONG (ID:2031611), declare that this thesis titled, “The Perfor-
mance of Artificial Neural Networks on Rough Heston Model” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master
degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

Owner
Typewritten Text
9th September 2020

Owner
Typewritten Text
CHUN KIAT ONG





v

UNIVERSITY OF BIRMINGHAM

Abstract
Birmingham Business School

MSc Mathematical Finance

The Performance of Artificial Neural Networks on Rough Heston Model

by Chun Kiat ONG (ID:2031611)

There has been extensive research on finding various methods to price op-
tion more accurately and more quickly. The rise of artificial neural networks
could provide an alternative means for this application. Although there ex-
ist many methods for approximating option prices under the rough Heston
model, our objective is to investigate the performance of artificial neural net-
works on rough Heston model option pricing as well as implied volatility
approximations since it is part of the calibration process. We use simulated
data to train the neural network instead of real market data for regulatory
reason. We also adapt the image-based implicit training method for ANN
implied volatility approximations where the output of the ANN is the entire
implied volatility surface. The results shows that artificial neural networks
can indeed generate accurate option prices and implied volatility approxi-
mations but it is not as efficient as the existing methods. Hence, we conclude
that ANN is a feasible alternative method for pricing option under the rough
Heston model but an ineffective one.

HTTPS://WWW.BIRMINGHAM.AC.UK
https://www.birmingham.ac.uk/schools/business




vii

Acknowledgements
I would like to take a moment to thank those who helped me throughout the
writing of this dissertation.

First, I wish to thank my supervisor, Dr. Daniel Duffy for his invaluable
support and expertise guidance. I would also like to thank Dr. Colin Rowat
for designing such a challenging and rigorous course. I truly enjoyed it.

I would also like to take this opportunity to acknowledge the support and
great love of my family, my girlfriend and my friends. They kept me going
on and this work would not have been possible without them.





ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

0 Project’s Overview 1
0.1 Project’s Overview . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 5
1.1 Organisation of This Thesis . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7
2.1 Application of ANN in Finance . . . . . . . . . . . . . . . . . . 7
2.2 Option Pricing Models . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Option Pricing Models 11
3.1 The Heston Model . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Option Pricing Under Heston Model . . . . . . . . . . . 12
3.1.2 Heston Model Implied Volatility Approximation . . . . 14

3.2 Volatility is Rough . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 The Rough Heston Model . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Rough Heston Pricing Equation . . . . . . . . . . . . . 19
3.3.1.1 Rational Approximation of Rough Heston Ric-

cati Solution . . . . . . . . . . . . . . . . . . . 20
3.3.1.2 Option Pricing Using Fast Fourier Transform 22

3.3.2 Rough Heston Model Implied Volatility . . . . . . . . . 23

4 Artificial Neural Networks 25
4.1 Dissecting the Artificial Neural Networks . . . . . . . . . . . . 25

4.1.1 Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Input, Output and Hidden Layers . . . . . . . . . . . . 26
4.1.3 Connections, Weights and Biases . . . . . . . . . . . . . 26
4.1.4 Forward and Backward Propagation, Loss Functions . 27
4.1.5 Activation Functions . . . . . . . . . . . . . . . . . . . . 27
4.1.6 Optimisation Algorithms and Learning Rate . . . . . . 28
4.1.7 Epochs, Early Stopping and Batch Size . . . . . . . . . 29

4.2 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . 30
4.2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . 30



x

4.3 Common Pitfalls and Remedies . . . . . . . . . . . . . . . . . . 30
4.3.1 Loss Function Stagnation . . . . . . . . . . . . . . . . . 31
4.3.2 Loss Function Fluctuation . . . . . . . . . . . . . . . . . 31
4.3.3 Over-fitting . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Under-fitting . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Application in Finance: ANN Image-based Implicit Method
for Implied Volatility Approximation . . . . . . . . . . . . . . . 32

5 Data 35
5.1 Data Generation and Storage . . . . . . . . . . . . . . . . . . . 35

5.1.1 Heston Call Option Data . . . . . . . . . . . . . . . . . . 36
5.1.2 Heston Implied Volatility Data . . . . . . . . . . . . . . 37
5.1.3 Rough Heston Call Option Data . . . . . . . . . . . . . 37
5.1.4 Rough Heston Implied Volatility Data . . . . . . . . . . 38

5.2 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 Data Splitting: Train - Validate - Test . . . . . . . . . . . 39
5.2.2 Data Standardisation and Normalisation . . . . . . . . 39
5.2.3 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . 40

6 Neural Networks Architecture and Experimental Setup 41
6.1 Neural Networks Architecture . . . . . . . . . . . . . . . . . . 41

6.1.1 ANN Architecture: Option Pricing under Heston Model 43
6.1.2 ANN Architecture: Implied Volatility Surface of Hes-

ton Model . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.3 ANN Architecture: Option Pricing under Rough Hes-

ton Model . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.4 ANN Architecture: Implied Volatility Surface of Rough

Heston Model . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Performance Metrics and Validation Methods . . . . . . . . . . 45
6.3 Implementation of ANN in Keras . . . . . . . . . . . . . . . . . 47
6.4 Summary of Neural Networks Architecture . . . . . . . . . . . 48

7 Results and Discussions 49
7.1 Heston Option Pricing ANN Results . . . . . . . . . . . . . . . 49
7.2 Heston Implied Volatility ANN Results . . . . . . . . . . . . . 51
7.3 Rough Heston Option Pricing ANN Results . . . . . . . . . . . 53
7.4 Rough Heston Implied Volatility ANN Results . . . . . . . . . 55
7.5 Run-time Performance . . . . . . . . . . . . . . . . . . . . . . . 59

8 Conclusions and Outlook 61

A pybind11: A step-by-step tutorial with examples 63
A.1 Software Prerequisites . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Create a Python Project . . . . . . . . . . . . . . . . . . . . . . . 64
A.3 Create a C++ Project . . . . . . . . . . . . . . . . . . . . . . . . 66
A.4 Convert the C++ project to extension for Python . . . . . . . . 67
A.5 Make the DLL available to Python . . . . . . . . . . . . . . . . 68
A.6 Call the DLL from Python . . . . . . . . . . . . . . . . . . . . . 70



xi

A.7 Example: Store C++ Eigen Matrix as NumPy Arrays . . . . . . 71
A.8 Example: Store Data Generated by Analytical Heston Model

as NumPy Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Asymptotic Expansions for General Stochastic Volatility Models 81
B.1 Asymptotic Expansions . . . . . . . . . . . . . . . . . . . . . . 81

C Deep Neural Networks Library in Python: Keras 83

Bibliography 85





xiii

List of Figures

1 Implementation Flow Chart. . . . . . . . . . . . . . . . . . . . . 2
2 Data flow diagram for ANN on Rough Heston Pricer. . . . . . 3

1.1 Problem Solving Process. . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Paths of fBm for different values of H. Adapted from (Shevchenko,
2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Implied Volatility Smiles of SPX as of 14th August 2013, with
maturity T in years. Red and blue dots represent bid and ask
SPX implied volatilities; green plots are from the calibrated
rough Heston model ; dashed orange lines are from the clas-
sical Heston model calibrated to these smiles. Adapted from
(Euch et al., 2019) . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 A Simple Neural Network . . . . . . . . . . . . . . . . . . . . . 25
4.2 The "pixels" of implied volatility surface are represented by the

outputs of neural network. . . . . . . . . . . . . . . . . . . . . . 33

5.1 shows how the data is partitioned for 5-fold cross validation.
Adapted from (Chapter 2 Modeling Process: k-fold cross validation). 40

6.1 Typical ANN Architecture for Option Pricing Application . . 42
6.2 Typical ANN Architecture for Implied Volatility Surface Ap-

proximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1 Plot of MSE Loss Function vs No. of Epochs for Heston Option
Pricing ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 Plot of Predicted vs Actual values for Heston Option Pricing
ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Plot of MSE Loss Function vs No. of Epochs for Heston Im-
plied Volatility ANN. . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4 Heston Implied Volatility Smiles ANN Predictions vs Actual
Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.5 Mean Absolute Error of Full Heston Implied Volatility Surface
ANN Predictions on Unseen Data. . . . . . . . . . . . . . . . . 53

7.6 Plot of MSE Loss Function vs No. of Epochs for Rough Heston
Option Pricing ANN. . . . . . . . . . . . . . . . . . . . . . . . . 54

7.7 Plot of Predicted vs Actual values for Rough Heston Pricing
ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.8 Plot of MSE Loss Function vs No. of Epochs for Rough Heston
Implied Volatility ANN. . . . . . . . . . . . . . . . . . . . . . . 56



xiv

7.9 Rough Heston Implied Volatility Smiles ANN Predictions vs
Actual Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.10 Mean Absolute Error of Full Rough Heston Implied Volatility
Surface ANN Predictions on Unseen Data. . . . . . . . . . . . 58



xv

List of Tables

5.1 Heston Model Call Option Data . . . . . . . . . . . . . . . . . . 36
5.2 Heston Model Implied Volatility Data . . . . . . . . . . . . . . 37
5.3 Rough Heston Model Call Option Data . . . . . . . . . . . . . 38
5.4 Heston Model Implied Volatility Data . . . . . . . . . . . . . . 38

6.1 Summary of Neural Networks Architecture for Each Application 48

7.1 Error Metrics of Heston Option Pricing ANN Predictions on
Unseen Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 5-fold Cross Validation Results of Heston Option Pricing ANN. 50
7.3 Accuracy Metrics of Heston Implied Volatility ANN Predic-

tions on Unseen Data . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 5-fold Cross Validation Results of Heston Implied Volatility

ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.5 Accuracy Metrics of Rough Heston Option Pricing ANN Pre-

dictions on Unseen Data. . . . . . . . . . . . . . . . . . . . . . . 54
7.6 5-fold Cross Validation Results of Rough Heston Option Pric-

ing ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.7 Accuracy Metrics of Rough Heston Implied Volatility ANN

Predictions on Unseen Data. . . . . . . . . . . . . . . . . . . . . 56
7.8 5-fold Cross Validation Results of Rough Heston Implied Volatil-

ity ANN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.9 Training Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.10 Execution Time for Predictions using ANN and Traditional

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59





xvii

List of Abbreviations

NN Neural Networks
ANN Artificial Neural Networks
DNN Deep Neural Networks
CNN Convolutional Neural Networks
SGD Stochastic Gradient Descent
SV Stochastic Volatility
CIR Cox, Ingersoll, and Ross
fBm fractional Brownian motion
FSV Fractional Stochastic Volatility
RFSV Rough Fractional Stochastic Volatility
FFT Fast Fourier Transform
ELU Exponential Linear Unit
ReLU Rectified Linear Unit





1

Chapter 0

Project’s Overview

This chapter intends to give a brief overview of the methodology of the
project without delving too much into the details.

0.1 Project’s Overview

It was advised by the supervisor to divide the problem into smaller, achiev-
able steps like (Mandara, 2019) did. The 4 main steps are:

• Define the objective.

• Formulate the procedures.

• Implement the procedures.

• Evaluate the results.

The objective is to investigate the performance of artificial neural net-
works (ANN) on vanilla option pricing and implied volatility approximation
under the rough Heston model. The performance metrics in this context are
accuracy and run-time performance.

Figure 1 shows the flow chart of implementation procedures. The proce-
dure starts with synthetic data generation. Then, we split the synthetic data
set into 3 portions - one for training (in-sample), one for validation and the
last one for testing (out-of-sample). Before the data is fed into the ANN for
training, it requires to be scaled or normalised as it has different magnitude
and range. In this thesis, we use the training method proposed by (Horvath
et al., 2019), the image-based implicit training approach for implied volatility
surface approximation. Then, we test the trained ANN model with unseen
data set to evaluate its accuracy.

The run-time performance of ANN will be compared with that from the
traditional approximation methods. This project requires the use of two pro-
gramming languages, C++ and Python. The data generation process is done
in C++. The wide range of machine learning libraries (Keras, TensorFlow,
PyTorch) in Python makes it the logical choice for the neural networks com-
putations. The experiment starts with the classical Heston model as a concept
validation first and then proceed to the rough Heston model.



2 Chapter 0. Project’s Overview

Option Pricing Models :
Heston, rough Heston

Data Generation

Data Pre-processing

Strike Price, Maturity &
Volatility etc

Scaled / Normalised Data
(Training Set)

ANN Architecture
Design ANN Training  

ANN Results
Evaluation

Conclusions

ANN Prediction

Trained ANN

Accuracy (Option Price & Implied
Vol.) and Runtime Performance

FIGURE 1: Implementation Flow Chart.



0.1. Project’s Overview 3

Input

Rough
Heston	Pricer

Keras	ANN
Trainer

ANN
Predictions	

Accuracy
Evaluation

Rough	Heston	Data

ANN	Model	Weights

model
parameters

model	parameters,
option	price

train	data

ANN	Model
Hyperparameters

trained	model
weights

trained	model
weights

predicted
option	price

test	data
(option	price)

Output

error	metrics

FIGURE 2: Data flow diagram for ANN on Rough Heston
Pricer.





5

Chapter 1

Introduction

Option pricing has always been a major research area in financial mathemat-
ics. Various methods and techniques have been developed to price options
more accurately and more quickly since the introduction of the well-known
Black-Scholes model in 1973 (Black et al., 1973). The Black-Scholes model has
an analytical solution and has only one parameter: volatility required to be
calibrated. This makes it very easy to implement. Its simplicity comes at the
expense of many unrealistic assumptions. One of its biggest flaws is the as-
sumption of constant volatility term. This assumption simply does not hold
in the real market. With this assumption, the Black-Scholes model fails to
capture the volatility dynamics exhibited by the market and so is unable to
value option accurately.

In 1993, (Heston, 1993) developed a stochastic volatility model in an at-
tempt to better capture the volatility dynamics. The Heston model assumes
the volatility of an underlying asset to follow a geometric Brownian motion
(Hurst parameter, H = 1/2). Similarly, the Heston model also has a closed-
form analytical solution and this makes it a strong alternative to the Black-
Scholes model.

Whilst the Heston model is more realistic than the Black-Scholes model,
the generated option prices do not match the observed vanilla option prices
consistently (Gatheral et al., 2014). Recent research shows that more accurate
option prices can be estimated if the volatility process is modelled as a frac-
tional Brownian motion with H < 1/2. When H < 1/2, the volatility process
path appears to be "rougher" than when H ≥ 1/2 and hence the volatility is
describe as rough.

(Euch et al., 2019) introduce the rough volatility version of Heston model
which combines the best of both worlds. However, the calibration of rough
Heston model relies on the notoriously slow Monte Carlo method due to its
non-Markovian nature. This obstacle is the reason that rough Heston strug-
gles to find its way into industrial applications. Although there exist many
approximation methods for rough Heston model to help to solve this prob-
lem, we are interested in the feasibility of machine learning algorithms.

Recent advancements of machine learning algorithms could potentially
provide an alternative means for this problem. Specifically, the artificial neu-
ral networks (ANN) offers the best hope because it is capable of learning
complex functional relationships between input and output data, and then
making predictions instantly.



6 Chapter 1. Introduction

In this project, our objective is to investigate the accuracy and run-time
performance of ANN on European call option price predictions and implied
volatility approximations under the rough Heston model. We start off by
using the Heston model as a concept validation then proceed to its rough
volatility version. For regulatory purposes, we use data simulated by option
pricing models for training.

1.1 Organisation of This Thesis

This thesis is organised as follows: In Chapter 2, we review some of the re-
lated work and provide justifications for our research. In Chapter 3, we dis-
cuss the theory of option pricing models of our interest. We provide a brief
introduction of ANN and some techniques to improve their performance in
Chapter 4. Then, we explain the tools we used for the data generation pro-
cess and some useful techniques to speed up the process in Chapter 5. In the
same chapter we also discuss about the important data pre-processing proce-
dures. Chapter 6 shows our network architecture and experimental setups.
We present the results and discuss our findings in Chapter 7. Finally, we
conclude our findings and discuss about potential future work in Chapter 8.

(START)
Problem:	

Rough	Heston	Model	Low	Industrial
Application	Despite	Giving	Accurate

Option	Prices

Root	Cause:	
Slow	Calibration	(Pricing	&	Implied	Vol.

Approximation)	Process

Potential	Solution:
Apply	ANN	to	Pricing	and	Implied

Volatility	Approximation

Implementation:
ANN	Computation	Using	Keras	in

Python

Evaluation:
Accuracy	and	Speed	of	ANN	Predictions

(END)
Conclusions:

ANN	Is	Feasible	or	Not?

FIGURE 1.1: Problem Solving Process.



7

Chapter 2

Literature Review

In this chapter we intend to provide a review of the current literature and
highlight the research gap. The focus of our review is the application of ANN
in option pricing models. We justify our methodology and our choice of
option pricing models. We would also provide some critiques.

2.1 Application of ANN in Finance

Option pricing has always been a hot topic in academia and the financial
industry. Researchers have been looking for various means to price option
more accurately and quickly. As the computational technology advances,
the application of ANN has gained popularity in solving complex problems
in many different industries. In quantitative finance, the idea of utilising
ANN for pricing derivatives comes from its ability to make fast and accurate
predictions once it is trained.

The application of ANN in option pricing begun with (Hutchinson et al.,
1994). The authors were the pioneers in applying ANN for pricing and hedg-
ing derivatives. Since then, there are more than 100 research papers on this
topic. It is also worth noting that complexity of the ANN’s architecture used
in the research papers increases over the years. Whilst there has been much
research on the applications of ANN in option pricing, there is only about
10% of papers focus on implied volatility (Ruf et al., 2020). The feasibility of
using ANN for implied volatility approximation is equally as important as
for option pricing since they are both part of the calibration process. Recently,
there are more research papers focus on implied volatility and calibration,
such as (Mostafa et al., 2008), (Liu et al., 2019a), (Liu et al., 2019b) and (Hor-
vath et al., 2019). A key contribution of (Horvath et al., 2019)’s work is the
introduction of imaged-based implicit training method for implied volatility
surface approximation. This method is allegedly robust and fast for approx-
imating the entire implied volatility surface.

A significant portion of the research papers uses real market data in their
research. Currently there is no standardised framework for deciding the ar-
chitecture and parameters of ANN. Hence, training the ANN directly with
market data might pose some issues when it comes to regulatory compli-
ance. (Horvath et al., 2019) is one of the few papers that uses simulated data
for ANN training. The simulated data is generated from Heston and rough
Bergomi models. Using simulated data removes the regulatory concerns as



8 Chapter 2. Literature Review

the functional mapping from model parameters to option price is known and
tractable.

The application of ANN requires splitting the entire data set for training,
validation and testing. Most of the papers that use real market data ensure
the data splitting process is chronological to preserve the time series structure
of the data. This is not a concern in our case we as are using simulated data.

The results in (Horvath et al., 2019) shows very accurate predictions. How-
ever, after examining the source code, we discover that the ANN is validated
and tested on the same data set. Thus, the high accuracy results does not
give any information about how well the trained ANN generalises to unseen
data. In our experiment, we will use different data sets for validation and
testing.

Common error metrics used include mean absolute error (MAE), mean
absolute percentage error (MAPE) and mean squared error (MSE). We sug-
gest a new metric, maximum absolute error as it is useful in a risk manage-
ment perspective for quantifying the largest prediction error in the worst case
scenario.

2.2 Option Pricing Models

In terms of the choice of option pricing models, over 80% of the papers select
Black-Scholes model or its extensions in their research (Ruf et al., 2020). As
mentioned before, there are other models that can give better option prices
than Black-Scholes such as the Stochastic Volatility models. (Liu et al., 2019b)
investigated the application of ANN in Heston and Bates models.

According to (Gatheral et al., 2014), modelling the volatility as rough
volatility can capture the volatility dynamics in the market better. Rough
volatility models struggle to find their ways into the industry due to their
slow calibration process. Hence, it is natural to for the direction of ANN
research to move towards rough volatility models.

Some of the recent examples include (Stone, 2019), (Bayer et al., 2018)
and (Horvath et al., 2019). (Stone, 2019) investigates the calibration of rough
Bergomi model using Convolutional Neural Networks (CNN) whilst (Bayer
et al., 2018) study the calibration of Heston and rough Bergomi models us-
ing Deep Neural Networks (DNN). Contrary to these papers, where they
perform direct calibration via ANN in one step, (Horvath et al., 2019) split
the calibration of rough Bergomi model into two steps. Firstly, the ANN is
trained to learn the pricing equation during a so-called offline session. Then,
the trained ANN is deterministic and stored for online calibration session
later. This approach can speed up the online calibration by a huge margin.

2.3 The Research Gap

In our thesis, we will be using the the approach in (Horvath et al., 2019). That
is to train the network to learn the pricing and implied volatility functional



2.3. The Research Gap 9

mappings separately. We would leave the model calibration step as the fu-
ture outlook of this project. We choose to work with rough Heston model,
another popular rough volatility model that has not been investigated yet.
We would adapt the image-based implicit training method in our research.
To re-iterate, we would validate and test our ANN with different data set to
obtain a true measure of ANN’s performance on unseen data.





11

Chapter 3

Option Pricing Models

In this chapter we discuss about the option pricing models of our interest:
Heston and rough Heston models. The idea of modelling volatility as rough
fractional Brownian motion will also be presented. Then, we derive their
pricing and implied volatility equations, and also explain their implementa-
tions for data generation.

The Black-Scholes model is simple but unrealistic for real world applica-
tions as its assumptions simply do not hold. One of its greatest criticisms is
the assumption of constant volatility of the underlying asset price. (Dupire,
1994) extended the Black-Scholes framework to give local volatility models.
He modelled the volatility as a deterministic function of the underlying price
and time. The function is selected such that its outputs match observed Euro-
pean option prices. This extension is time-inhomogeneous and the dynamics
it exhibits is still unrealistic. Thus, it is not able to produce future volatility
surfaces that emulate our observations.

Stochastic Volatility (SV) models were introduced in which the volatility
of the underlying is modelled as a geometric Brownian motion. Recent re-
search shows that rough volatility can capture the true volatility dynamics
better and so this leads to the rough volatility models.

3.1 The Heston Model

One of the most popular SV models is the one proposed by (Heston, 1993), its
popularity is due to the fact that its pricing equation for European options is
analytically tractable. The property allows calibration procedures to be done
efficiently.

The Heston model for a one-dimensional spot price, S follows a stochastic
process

dS = µSdt +
√

νSdW1 (3.1)

And its instantaneous variance, ν follows a Cox, Ingersoll, and Ross (CIR)
process (Cox et al., 1985)

dν = κ(θ − ν)dt + ξ
√

νdW2 (3.2)
〈dW1, dW2〉 = ρdt (3.3)

where



12 Chapter 3. Option Pricing Models

• µ is the (deterministic) rate of return of the spot

• θ is the long term mean volatility

• ξ is the volatility of volatility

• κ is the mean reversion rate of volatility.

• ρ is the correlation between spot and volatility moves

• W1 and W2 are Wiener processes

3.1.1 Option Pricing Under Heston Model

In this section, we follow (Gatheral, 2006) closely. We start by forming a
portfolio Π containing option being priced V, number of stocks −∆ and a
quantity of −∆1 of another asset whose value is V1

Π = V − ∆S− ∆1V1

The change in portfolio during dt is

dΠ =

[
∂V
∂t

+
1
2

νS2 ∂2V
∂S2 + ρξνS

∂2V
∂ν2∂S

+
1
2

ξ2ν
∂2V
∂ν2

]
dt

− ∆1

[
∂V1

∂t
+

1
2

νS2 ∂2V1

∂S2 + ρξνS
∂2V1

∂ν∂S
+

1
2

ξ2ν
∂2V1

∂ν2

]
dt

+

[
∂V
∂S
− ∆1

∂V1

∂S
− ∆

]
dS +

[
∂V
∂ν
− ∆1

∂V1

∂ν

]
dν

Note the explicit dependence on t of S and ν has been removed for simplicity.
We can make the portfolio instantaneously risk-free by eliminating dS and

dν terms
∂V
∂S
− ∆1

∂V1

∂S
− ∆ = 0

And,
∂V
∂ν
− ∆1

∂V1

∂ν
= 0

So, we are left with

dΠ =

[
∂V
∂t

+
1
2

νS2 ∂2V
∂S2 + ρξνS

∂2V
∂ν∂S

+
1
2

ξ2ν
∂2V
∂ν2

]
dt

− ∆1

[
∂V1

∂t
+

1
2

νS2 ∂2V1

∂S2 + ρξνS
∂2V1

∂ν∂S
+

1
2

ξ2ν
∂2V1

∂ν2

]
dt

=rΠdt
=r(V − S− ∆1V1)dt



3.1. The Heston Model 13

Then, we apply the no arbitrage principle: the return of a risk-free portfolio
must be equal to the risk-free rate. And we assume the risk-free rate to be
deterministic for our case.

Rearranging the above equation by collecting V terms on the left-hand
side and V1 terms on the right-hand side

∂V
∂t + 1

2 νS2 ∂2V
∂S2 + ρξνS ∂2V

∂ν∂S + 1
2 ξ2ν ∂2V

∂ν2 + rS ∂V
∂S − rV

∂V
∂ν

=
∂V1
∂t + 1

2 νS2 ∂2V1
∂S2 + ρξνS ∂2V1

∂ν∂S + 1
2 ξ2ν ∂2V1

∂ν2 + rS ∂V1
∂S − rV1

∂V1
∂ν

It is obvious that the ratio is equal to some function of S, ν and t: f (S, ν, t).
Thus, we have:

∂V
∂t

+
1
2

νS2 ∂2V
∂S2 + ρξνS

∂2V
∂ν∂S

+
1
2

ξ2ν
∂2V
∂ν2 + rS

∂V
∂S
− rV = f

∂V
∂ν

In the case of Heston model, f is chosen as:

f = −(κ(θ − ν)− λ
√

ν)

where λ(S, ν, t) is called the market price of volatility risk. We do not delve
into the choice of f and the concept of λ(S, ν, t) any further here. See (Wilmott,
2006) for his arguments.

(Heston, 1993) assumed in his paper that λ(S, ν, t) is linear in the instanta-
neous variance νt to retain the form of the equation under the transformation
from the statistical measure to the risk-neutral measure. Here, we are only
interested in pricing the options, so we can set λ(S, ν, t) to be zero (Gatheral,
2006).

Hence, we arrived at:

∂V
∂t

+
1
2

νS2 ∂2V
∂S2 + ρξνS

∂2V
∂ν∂S

+
1
2

ξ2ν
∂2V
∂ν2 + rS

∂V
∂S
− rV = κ(ν− θ)

∂V
∂ν

(3.4)

According to (Heston, 1993), the price of an undiscounted European call
option price, C with strike price, K and time to maturity, T has solution in the
form:

C(S, K, ν, T) =
1
2
(F− K) +

1
π

∫ ∞

0
(F ∗ f1 − K ∗ f2)du (3.5)



14 Chapter 3. Option Pricing Models

where

f1 = Re

[
e−iu ln K ϕ(u− i)

iuF

]

f2 = Re

[
e−iu ln K ϕ(u)

iu

]
ϕ(u) = E(eiu ln ST)

F = SeµT

The evaluation of 3.5 requires the computation of Fourier inversion in-
tegrals. And it is susceptible to numerical instabilities due to the involved
complex logarithms. (Kahl et al., 2006) proposed an integration scheme to
compute the Fourier inversion integral by applying some transformations to
the asymptotic structure. Thus, the solution becomes:

C(S, K, ν, T) =
∫ 1

0
y(x)dx, x ∈ R (3.6)

where

y(x) =
1
2
(F− K) +

F ∗ f1

(
− ln x

C∞

)
− K ∗ f2

(
− ln x

C∞

)
x ∗ π ∗ C∞

The limits at the boundaries of the integral are:

lim
x→0

y(x) =
1
2
(F− K)

and

lim
x→1

y(x) =
1
2
(F− K) +

F ∗ limu→0 f1(u)− K ∗ limu→0 f2(u)
π ∗ C∞

Equation 3.6 provides a more robust pricing method for moderate to long
maturities or strong mean-reversion options. For the full derivation of equa-
tion 3.6, see (Kahl et al., 2006). The source code to implement equation 3.6
was provided by the supervisor and is the source code for (Duffy et al., 2012).

3.1.2 Heston Model Implied Volatility Approximation

Before the model is used for pricing options, the model’s parameters need to
be calibrated so that it can return current market prices (at least to some de-
gree of accuracy). That is, the unmeasurable model parameters are obtained
by calibrating to implied volatility that are observed on the market. Hence,
this motivates the need for fast implied volatility computation.

Unfortunately, there is no closed-form analytical formula for calculating
implied volatility Heston model. There are however, many closed-form ap-
proximations for Heston implied volatility.

In this project, we select the implied volatility approximation method
for Heston proposed by (Lorig et al., 2019) that allegedly outperforms other



3.1. The Heston Model 15

methods such as the one by (Fouque et al., 2012). (Lorig et al., 2019) derive
a family of asymptotic expansions for European-style option implied volatil-
ity. Their method provides an explicit approximation and requires no special
functions, not even numerical integration and so it is faster to compute than
the counterparts.

We follow closely the derivation steps outlined in (Lorig et al., 2019). Con-
sider the Heston model in Section (3.1). According to (Andersen et al., 2007),
ρ must be set to negative to avoid moment explosion. To circumvent this, we
apply the following change of variables (X(t), V(t)) := (ln S(t), eκtν). Using
the asymptotic expansions for general stochastic models (see Appendix B)
and Ito’s formula we have

dX = −1
2

e−κtVdt +
√

e−κtVdW1, X(0) = x := ln s (3.7)

dV = θκeκtdt + ξ
√

eκtVdW2, V(0) = ν := z > 0 (3.8)
〈dW1, dW2〉 = ρdt (3.9)

The parameters ν, κ, θ, ξ, W1, W2 play the same role as in Section (3.1).
Then, we apply the second order differential operator A(t) to (X, V):

A(t) = 1
2

e−κtv(∂2
x − ∂x) + θκeκt∂v +

1
2

ξ2ξeκtv∂2
v + ξρν∂x∂v

Define T as time to maturity, k as log-strike. Using the time-dependent
Taylor series expansion ofA(T) with (x̄(T), v̄(T)) = (X0, E[V(T)]) := (x, θ(eκT−
1)) to give (see Appendix B)

σ0 =

√
−θ + θκT + e−κT(θ − v) + v

κT

σ1 =
ξρze−κT(−2v̄− v̄κT − eκT(v̄(κT − 2) + v) + κTv + v)

√
2κ2σ2

0 T
3
2

σ2 =
ξ2e−2κT

32κ4σ5
0 T3

[−2
√

2κσ3
0 T

3
2 z(−v̄− 4eκT(v̄ + κT(v̄− v)) + e2κT(v̄(5− 2κT)− 2v) + 2v)

+ κσ2
0 T(4z2 − 2)(v̄ + e2κT(−5v̄ + 2v̄κT + 8ρ2(v̄(κT − 3) + v) + 2v))

+ κσ2
0 T(4z2 − 2)(4eκT(v̄ + v̄κT + ρ2(v̄(κT(κT + 4) + 6)− v(κT(κT + 2) + 2))

− κTv)− 2v)

+ 4
√

2ρ2σ0
√

Tz(2z2 − 3)(−2− v̄κT − eκT(v̄(κT − 2) + v) + κTv + v)2

+ 4ρ2(4(z2 − 3)z2 + 3)(−2v̄− v̄κT − eκT(v̄(κT − 2) + v) + κTv + v)2]

−
σ2

1 (4(x− k)2 − σ4
0 T2)

8σ3
0 T

where

z =
x− k− σ2

0 T
2

σ0
√

2T



16 Chapter 3. Option Pricing Models

The explicit expression for σ3 is too long to be included here. See (Lorig
et al., 2019) for the full derivation. The explicit expression for the implied
volatility approximation is:

σimplied = σ0 + σ1z + σ2z2 + σ3z3 (3.10)

The C++ source code to implement this is available here: Heston Implied
Volatility Approximation.

https://explicitsolutions.wordpress.com/2014/03/07/c-code-for-heston-and-cev-implied-vol-expansions/
https://explicitsolutions.wordpress.com/2014/03/07/c-code-for-heston-and-cev-implied-vol-expansions/


3.2. Volatility is Rough 17

3.2 Volatility is Rough

We start this section by introducing the fractional Brownian motion (fBm),
which is a generalisation of Brownian motion.

Definition 3.2.1 Fractional Brownian Motion (fBm) is a centered Gaussian process
BH

t , t ≥ 0 with the autocovariance function:

E[BH
t BH

s ] =
1
2
(|t|2H + |s|2H − |t− s|2H) (3.11)

where H ∈ (0, 1), is the Hurst index or Hurst parameter associated with the frac-
tional Brownian motion.

The Hurst parameter is a measure of the long-term memory of a time
series. It was first introduced by (Hurst, 1951) for modelling water levels of
the Nile river in order to determine the optimum dam size. As it turns out,
it is also suitable for modelling time series data from other natural systems.
(Peters, 1991) and (Peters, 1994) are some of the earliest examples of applying
this concept in financial time series modelling. A time series can be classified
into 3 categories based on the Hurst parameter

1. 0 < H < 1
2 : Negative correlation in the increment/decrement of the

process. A mean reverting process, which implies an increase in value
is more likely followed by a decrease in value, and vice versa. The
smaller the value the greater the mean-reverting effect.

2. H = 1
2 : No correlation in the increment/decrement of the process (geo-

metric Brownian motion or Wiener process).

3. 1
2 < H < 1: Positive correlation in the increment/decrement of the
process. A trend reinforcing process, which means the direction of the
next value is more likely the same as current value. The strength of the
trend is greater when H is closer to 1.

Empirical evidence shows that log-volatility time series behaves similar
to a fBm, with Hurst parameter of order 0.1 (Gatheral et al., 2014). Essentially,
all the statistical stylised facts of volatility can be captured when modelling
it as a rough fBm.

This motivates the use of the fractional stochastic volatility (FSV) model
by (Comte et al., 1998). Our model is called rough fractional stochastic volatil-
ity (RFSV) model to emphasise that H < 1/2. The term ’rough’ refers to the
roughness of the path of fBm. From Figure 3.1, one can notice that the fBm
path gets ’rougher’ as H decreases.



18 Chapter 3. Option Pricing Models

FIGURE 3.1: Paths of fBm for different values of H. Adapted
from (Shevchenko, 2015).

3.3 The Rough Heston Model

In this section we introduce the rough volatility version of Heston model and
derive its pricing and implied volatility equations.

As stated before, rough volatility models can fit the volatility surface no-
tably well with very few parameters. Hence, it is natural to modify the Hes-
ton model and consider its rough version.

The rough Heston model for a one-dimensional asset price S with instan-
taneous variance ν(t) takes the form as in (Euch et al., 2016):

dS = S
√

νdW1

ν(t) = ν(0) +
1

Γ(α)

∫ t

0
(t− s)α−1κ(θ− ν(s))ds +

ξ

Γ(α)

∫ t

0
(t− s)α−1

√
ν(s)dW2

(3.12)
〈dW1, dW2〉 = ρdt

where

• α = H + 1
2 ∈ (1/2, 1), governs the roughness of the volatility sample

paths

• κ is the mean reversion rate

• θ is the long term mean volatility

• ν(0) is the initial volatility



3.3. The Rough Heston Model 19

• ξ is the volatility of volatility

• Γ is the Gamma function

• W1 and W2 are two Brownian motions with correlation ρ

When α = 1 (H = 0.5), we recover the classical Heston model in Chapter
(3.1).

3.3.1 Rough Heston Pricing Equation

The pricing equation of rough Heston model is inspired by the classical Hes-
ton one. In classical Heston model, option price can be obtained by applying
Fourier inversion integrals to the characteristic function that is expressed in
terms of the solution of a Riccati equation. The rough Heston model dis-
plays a similar structure but with the Riccati equation being replaced by a
fractional Riccati equation.

(Euch et al., 2016) derived a characteristic function for the rough Heston
model; this result is particularly important as the non-Markovian nature of
the fractional Brownian motion makes other numerical pricing methods (e.g.
Monte Carlo) difficult to implement.

Definition 3.3.1 The fractional integral of order r ∈ (0, 1] of a function f is

Ir f (t) =
1

Γ(r)

∫ t

0
(t− s)r−1 f (s)ds (3.13)

whenever the integral exists, and the fractional derivative of order r ∈ (0, 1] is

Dr f (t) =
1

Γ(1− r)
d
dt

∫ t

0
(t− s)−r f (s)ds (3.14)

whenever it exists.

Then, we quote the results from (Euch et al., 2016) directly. For the full
proof see Section 6 of (Euch et al., 2016).

Theorem 3.3.1 For all t ≥ 0, the characteristic function of the log-price Xt =

ln S(t)
S(0) is

φX(a, t) = E[eiaXt ] = exp[κθ I1h(a, t) + ν(0)I1−αh(a, t)] (3.15)

where h is solution of the fractional Riccati equation

Dαh(a, t) = −1
2

a(a + i) + κ(iaρξ − 1)h(a, t) +
(ξ)2

2
h2(a, t), I1−αh(a, 0) = 0

(3.16)
which admits a unique continuous solution. a ∈ C, a suitable region in the complex
plane (see Definition 3.3.2).



20 Chapter 3. Option Pricing Models

Definition 3.3.2 We define the strip in the complex plane relevant to the computa-
tion of option prices characteristic function in Theorem (3.3.1)

C =
{

z ∈ C : <(z) ≥ 0,− 1
1− ρ2 ≤ =(z) ≤ 0

}
(3.17)

where < and = denote real and imaginary parts respectively.

There is no explicit solution to equation (3.16) so it has to be solved nu-
merically. (Gatheral et al., 2019) present a simple rational approximation to
the solution of the rough Heston Riccati equation, which is inevitably faster
than the numerical schemes.

3.3.1.1 Rational Approximation of Rough Heston Riccati Solution

Firstly, the short-time series expansion of the solution by (Alos et al., 2017)
can be written as

hs(a, t) =
∞

∑
j=0

Γ(1 + jα)
Γ[1 + (j + 1)α]

β j(a)ξ jt(j+1)α (3.18)

with

β0(a) =− 1
2

a(a + i)

βk(a) =
1
2

k−2

∑
i,j=0

1i+j=k−2 βi(a)β j(a)
Γ(1 + iα)

Γ[1 + (i + 1)α]
Γ(1 + jα)

Γ[1 + (j + 1)α]

+ iρa
Γ[1 + (k− 1)α]

Γ(1 + kα)
βk−1(a)

Again, from (Alos et al., 2017), the long-time expansion is

hl(a, t) = r−
∞

∑
k=0

γk
ξt−kα

AkΓ(1− kα)
(3.19)

where

γ1 = −γ0 = −1

γk = −γk−1 +
r−
2A

∞

∑
i,j=1

1i+j=k γiγj
Γ(1− kα)

Γ(1− iα)Γ(1− jα)

A =
√

a(a + i)− ρ2a2

r± = −iρa± A

Now, we can construct the global approximation. Using the same tech-
niques in (Atkinson et al., 2011), the rational approximation of h(a, t) is given



3.3. The Rough Heston Model 21

by

h(m,n)(a, t) =

m
∑

i=1
pi(ξtα)i

n
∑

j=0
qj(ξtα)j

, q0 = 1 (3.20)

Numerical experiments in (Gatheral et al., 2019) showed h(3,3) is a good
choice for high accuracy and fast computation. Thus, we can express explic-
itly

h(3,3)(a, t) =
p1ξ(tα) + p2ξ2(tα)2 + p3ξ3(tα)3

1 + q1ξ(tα) + q2ξ2(tα)2 + q3ξ3(tα)3 (3.21)

Thus, from equations (3.18) and (3.19) we have

hs(a, t) =
Γ(1)

Γ(1 + α)
β0(a)(tα) +

Γ(1 + α)

Γ(1 + 2α)
β1(a)ξ(tα)2

+
Γ(1 + 2α)

Γ(1 + 3α)
β2(a)ξ2(tα)3 +O(t4α)

hs(a, t) = b1(tα) + b2(tα)2 + b3(tα)3 +O[(tα)4]

and

hl(a, t) =
r−γ0

Γ(1)
+

r−γ1

AΓ(1− α)ξ

1
(tα)

+
r−γ2

A2Γ(1− 2α)ξ2
1

(tα)2 +O
[

1
(tα)3

]
hl(a, t) = g0 + g1

1
(tα)

+ g2
1

(tα)2 +O
[

1
(tα)3

]
Matching the coefficients of equation (3.21) to hs and hl forces the coeffi-

cients bi and gj to satisfy

p1ξ = b1 (3.22)

(p2 − p1q1)ξ
2 = b2 (3.23)

(p1q2
1 − p1q2 − p2q1 + p3)ξ

3 = b3 (3.24)

p3ξ3

q3ξ3 = g0 (3.25)

(p2q3 − p3q2)ξ
5

(q2
3)ξ

6
= g1 (3.26)

(p1q2
3 − p2q2q3 − p3q1q3 + p3q2

2)ξ
7

(q3
3)ξ

9
= g2 (3.27)



22 Chapter 3. Option Pricing Models

The solution of this system is

p1 =
b1

ξ
(3.28)

p2 =
b3

1g1 + b2
1g2

0 + b1b2g0g1 − b1b3g0g2 + b1b3g2
1 + b2

2g0g2 − b2
2g2

1 + b2g3
0

(b2
1g2 + 2b1g0g1 + b2g0g2 − b2g2

1 + g3
0)ξ

2

(3.29)

p3 = g0q3 (3.30)

q1 =
b2

1g1 − b1b2g2 + b1g2
0 − b2g0g1 − b3g0g2 + b3g2

1

(b2
1g2 + 2b1g0g1 + b2g0g2 − b2g2

1 + g3
0)ξ

(3.31)

q2 =
b2

1g0 − b1b2g1 − b1b3g2 + b2
2g2 + b2g2

0 − b3g0g1

(b2
1g2 + 2b1g0g1 + b2g0g2 − b2g2

1 + g3
0)ξ

2
(3.32)

q3 =
b3

1 + 2b1b2g0 + b1b3g1 − b2
2g1 + b3g2

0

(b2
1g2 + 2b1g0g1 + b2g0g2 − b2g2

1 + g3
0)ξ

3
(3.33)

3.3.1.2 Option Pricing Using Fast Fourier Transform

After solving the Riccati equation using the rational approximation equation
(3.21), we can compute the characteristic function, φX(a, t) in equation (3.15).
Once the characteristic function is obtained, many methods are available to
compute call option prices, see (Carr and Madan, 1999), (Itkin, 2010), (Lewis,
2001) and (Schmelzle, 2010). In this project, we select the Carr and Madan ap-
proach which is a fast option pricing method that uses fast Fourier transform
(FFT). Suppose k = ln K and C(k, T) is the value of a European call option
with strike K and maturity T. Unfortunately, the FFT cannot be applied di-
rectly to evaluate the call option price because the call pricing function is
not square-integrable. A key contribution of (Carr and Madan, 1999) is the
modification of the call pricing function with respect to k. With this modifica-
tion, a whole range of option prices can be obtained with one inverse Fourier
transform.

Consider the modified call price c(k, T)

c(k, T) := eβkC(k, T), β > 0 (3.34)

And its Fourier transfrom is

ψX(u, T) =
∫ ∞

−∞
eiukc(k, T)dk, u ∈ R>0 (3.35)

which can be expressed as

ψX(u, T) =
e−rTφX[u− (β + 1)i, T]

β2 + β− u2 + i(2β + 1)u
(3.36)

where r is the risk-free rate, φX(.) is the characteristic function defined in
equation (3.15).



3.3. The Rough Heston Model 23

The purpose of β is to assist the integrability of the modified call pricing
function over the negative log-strike axis. Hence, a sufficient condition is that
ψX(0) being finite

ψX(0, T) < ∞ (3.37)

=⇒ φX[−(β + 1)i, T] < ∞ (3.38)

=⇒ exp[θκ I1h(−(β + 1)i, T) + ν(0)I1−αh(−(β + 1)i, T)] < ∞ (3.39)

Using equation (3.39) we can determine the upper bound value of β such that
condition (3.37) is satisfied. (Carr and Madan, 1999) suggest one quarter of
the upper bound serves a good choice for β.

The call price C(k, T) can be recovered by applying the inverse Fourier
transform

C(k, T) =
e−βk

2π

∫ ∞

−∞
<[e−iukψX(u, T)]du (3.40)

=
e−βk

π

∫ ∞

0
<[e−iukψX(u, T)]du (3.41)

The semi-infinite integral in the call price equation can be evaluated by
numerical methods such as the trapezoidal rule and FFT as shown in (Kwok
et al., 2012)

C(k, T) ≈ e−βk

π

N

∑
j=1

e−iujkψX(uj, T)∆u (3.42)

where uj = (j− 1)∆u, j = 1, 2, . . . , N.
We end this section with a summary of the steps required to price call

option under rough Heston model:

1. Compute the solution of fractional Riccati equation (3.16), h using equa-
tion (3.21).

2. Compute the characteristic function in equation (3.15).

3. Determine the suitable value for β using equation (3.39).

4. Apply the Fourier transform in equation (3.36).

5. Evaluate the call option price by implementing FFT in equation (3.42).

3.3.2 Rough Heston Model Implied Volatility

(Euch et al., 2019) present an almost instantaneous and accurate approxi-
mation method to compute rough Heston implied volatility. This method
allows us to approximate rough Heston implied volatility by simply scaling
the volatility of volatility parameter ν and feed this scaled parameter as input
into the classical Heston implied volatility approximation equation in Chap-
ter 3.1.2. For a given maturity T, The scaled volatility of volatility parameter
ν̃ is

ν̃ =

√
3

2H + 2
ν

Γ(H + 3
2)

1

T
1
2−H

(3.43)



24 Chapter 3. Option Pricing Models

FIGURE 3.2: Implied Volatility Smiles of SPX as of 14th August
2013, with maturity T in years. Red and blue dots represent
bid and ask SPX implied volatilities; green plots are from the
calibrated rough Heston model ; dashed orange lines are from
the classical Heston model calibrated to these smiles. Adapted

from (Euch et al., 2019)



25

Chapter 4

Artificial Neural Networks

This chapter starts with an introduction to Artificial Neural Networks (ANN).
We introduce the terminologies and basic elements of ANN, and explain the
methods that we used to increase training speed and predictive accuracy. We
also discuss about the training process for ANN, common pitfalls and their
remedies. Finally, we discuss about the ANN type of interest and extend the
discussions to Deep Neural Networks (DNN).

The concept of ANN has come a long way. It started off with modelling a
simple neural network after electrical circuits, which was proposed by War-
ren McCulloch, a neurologist, and a young mathematician, Walter Pitts, in
1943 (McCulloch et al., 1943). This idea was further strengthen by Donald
Hebb (Hebb, 1949).

ANN’s ability to learn complex non-linear functional mappings by deci-
phering the pattern between independent and dependent variables has found
its applications in many fields. With the computational resources becoming
more accessible and the availability of big data set, ANN’s popularity has
grown exponentially in recent years.

4.1 Dissecting the Artificial Neural Networks

FIGURE 4.1: A Simple Neural Network

Before we delve deeper into the world of ANN, let us explain what do
parameters and hyperparameters mean.



26 Chapter 4. Artificial Neural Networks

Parameters refer to the variables that are updated throughout the train-
ing process, they include weights and biases. Hyperparameters are the con-
figuration variables that define the architecture of ANN and stay constant
throughout the training process. Hyperparameters include number of neu-
rons, hidden layers, activation functions and number of epochs etc.

4.1.1 Neurons

Like a biological neuron, an artificial neuron is the fundamental working
unit in an ANN. It is essentially a mathematical function that receives mul-
tiple inputs and generates an output. More precisely, it takes the weighted
sum of inputs and applies the activation function to the sum to generate an
output. In the case of simple ANN (as shown in Figure 4.1), this will be the
network output. In more sophisticated ANN, the output of a neuron can be
the inputs of other neurons.

4.1.2 Input, Output and Hidden Layers

An input layer is the first layer of an ANN. It receives and sends the training
data into the network for further processing. The number of input neurons
is equal to the number of input features of training data.

The output layer is the final layer of the network. It outputs the predic-
tions for a given set of input features. It can have more than one output
neuron.

A hidden layer is the layer between input and output layers. It contains
neuron(s) and receives weighted inputs from the input layer. Whilst ANN
contains only one input layer and one output layer, the number of hidden
layers can be more than one. One hidden layer can only be used for solving
linearly separable problems. For more complex problems, multiple hidden
layers are needed.

Systematic experimentation is required to identify the appropriate num-
ber of hidden layers to prevent under-fitting and over-fitting, and thus in-
creasing predictive accuracy.

4.1.3 Connections, Weights and Biases

From input layer to output layer, each connection is assigned a weight that
denotes its relative importance. Random weights will be initialised when
training begins. As training continues these weights will be updated.

Sometimes a bias (different from the bias term in statistics) will be added
to the neuron. It is merely a constant input with weight 1. Intuitively speak-
ing, the purpose of a bias is to shift the activation function away from the
origin, thereby allowing the neuron to give non-zero output when the inputs
are 0.



4.1. Dissecting the Artificial Neural Networks 27

4.1.4 Forward and Backward Propagation, Loss Functions

Forward propagation is the passing of input data in the forward direction
through the network to generate output. Then, the difference between output
and target output is estimated by a loss function. It is a measure of how well
an ANN performs with the current set of weights. Typical loss functions for
regression problems include mean squared error (MSE) and mean absolute
error (MAE). They are defined as

Definition 4.1.1

MSE =
1
n

n

∑
i=1

(yi,predict − yi,actual)
2 (4.1)

Definition 4.1.2

MAE =
1
n

n

∑
i=1
|yi,predict − yi,actual| (4.2)

where yi,predict is the i-th predicted output and yi,actual is the i-th actual output.
Subsequently, this information is propagated backward from output layer

to input layer and the gradients of the loss function w.r.t. the weights is com-
puted. The algorithm then makes adjustments to the weights accordingly to
minimise the loss function. An iteration is one complete cycle of forward and
backward propagation.

ANN’s training is an unconstrained optimisation problem with the loss
function as the objective function. The algorithm navigates through the search
space to find optimal weights to minimise the loss function (e.g. MSE). It can
be expressed like so,

min
w̄

1
n

n

∑
i=1

(yi,predict − yi,actual)
2 (4.3)

where w̄ is the vector that contains the weights of all the connections within
the ANN.

4.1.5 Activation Functions

An activation function is a mathematical function applied to the output of a
neuron to determine whether it should be activated (or "fired") or not, based
on the relevance of the neuron’s inputs to the prediction. This is analogous
to the neuronal firing activity in human’s brain.

Activation functions can be linear or non-linear. Linear activation func-
tion is only suitable when the functional relationship is linear. Non-linear
activation functions are used for most applications. In our case, non-linear
activation functions are more suitable as the pricing and implied volatility
functional mappings are complex.

The common activation function includes,



28 Chapter 4. Artificial Neural Networks

Definition 4.1.3 Rectified Linear Unit (ReLU)

fReLU(x) =

{
0 , if x ≤ 0
x , if x > 0

∈ [0, ∞) (4.4)

Definition 4.1.4 Exponential Linear Unit (ELU)

fELU(x) =

{
α(ex − 1) , if x ≤ 0
x , if x > 0

∈ (−α, ∞) (4.5)

where α > 0.

The value of α is usually chosen to be 1 for most applications.

Definition 4.1.5 Linear or identity

flinear(x) = x ∈ (−∞, ∞) (4.6)

4.1.6 Optimisation Algorithms and Learning Rate

Learning rate refers to the amount of change is applied to the weights in each
iteration of the training process. High learning rate results in fast training
speed but there is risk of divergence whereas low learning rate may reduce
the training speed.

Common optimisation algorithms for training ANN are: Stochastic Gra-
dient Descent (SGD) and its extensions such as RMSProp and Adam. The
SGD pseudocode is the following:

Algorithm 1 Stochastic Gradient Descent

Initialise a vector of random weights w̄ and learning rate lr.
while Loss > error do

Randomly shuffle the training data of size n.
for i = 1, 2, · · · , n do

w̄new = w̄current − lr ∂Loss
∂w̄current

end for
end while

SGD is popular because it is simple to implement and can provide good
results for most applications. In SGD, the learning rate lr is fixed throughout
the process. This is found to be an issue because the appropriate learning rate
is difficult to determine. Selecting a high learning rate is prone to divergence
whereas using a low learning rate can result in slow training process. Hence,
improvements have been made to SGD to allow the learning rate to be adap-
tive. Root Mean Square Propagation (RMSProp) is one of the the extensions



4.1. Dissecting the Artificial Neural Networks 29

that the learning rate to be variable throughout the training process (Hinton
et al., 2015). It is a method that divides the learning rate by the exponen-
tial moving average of past gradients. The author suggests the exponential
decay rate to be b = 0.9 and its pseudocode is presented below:

Algorithm 2 Root Mean Square Propagation (RMSProp)

Initialise a vector of random weights w̄, learning rate lr, v = 0 and b = 0.9.
while Loss > error do

Randomly shuffle the training data of size n.
for i = 1, 2, · · · , n do

vcurrent = bvprevious + (1− b)[ ∂Loss
∂w̄current

]2

w̄new = w̄current − lr√
vcurrent+ε

∂Loss
∂w̄current

end for
end while

where ε is a small number to prevent division by zero.

A further improved version was proposed by (Kingma et al., 2015), called
the Adaptive Moment Estimation (Adam). In RMSProp, the algorithm adapts
the learning rate based on the first moment only. Adam improves this fur-
ther by using the average of the second moments of the gradients to make
adaptation in the learning rate. The advantage of Adam is that it can handle
sparse gradients on noisy data. The pseudocode of Adam is given below:

Algorithm 3 Adaptive Moment Estimation (Adam)

Initialise a vector of random weights w̄, learning rate lr, v = 0, m = 0,
b = 0.9 and b1 = 0.999.
while Loss > error do

Randomly shuffle the training data of size n.
for i = 1, 2, · · · , n do

mcurrent = bmprevious + (1− b)[ ∂Loss
∂w̄current

]2

vcurrent = b1vprevious + (1− b1)[
∂Loss

∂w̄current
]2

m̂current =
mcurrent

1−bcurrent
v̂current =

vcurrent
1−b1,current

w̄new = w̄current − lr√
v̂current+ε

m̂current
∂Loss

∂w̄current

end for
end while

where b is the exponential decay rate for the first moment and b1 is the expo-
nential decay rate for the second moment.

4.1.7 Epochs, Early Stopping and Batch Size

Epoch is the number of times that the entire training data set is passed through
the ANN. Generally, we want the number of epoch as high as possible. How-
ever, this may cause the ANN to over-fit. Early stopping would be useful



30 Chapter 4. Artificial Neural Networks

here to stop the training before the ANN becomes over-fit. It works by stop-
ping the training process when loss function shows no improvement. Batch
size is the number of input samples processed before the hyperparameters
are updated.

4.2 Feedforward Neural Networks

Feedforward Neural Networks are the most common type of ANN in practi-
cal applications. They are called feed forward because the training data only
flows from input layer to output layer, there is no feedback loop within the
network.

4.2.1 Deep Neural Networks

Deep Neural Networks (DNN) are Feedforward Neural Networks with more
than one hidden layer. The depth here refers to the number of hidden layers.
This the type of ANN of our interest and the following theorems provide
justifications.

Theorem 4.2.1 (Hornik et al., 1989). Universal Approximation Theorem: LetNN a
din,dout

be the set of neural networks with activation function fa : R → R, input dimen-
sion din ∈ N and output dimension dout ∈ N. Then, if fa is continuous and
non-constant NN a

din,dout
is dense in Lebesgue space Lp(µ) for all finite measures µ.

Theorem 4.2.2 (Hornik et al., 1990). Universal Approximation Theorem for Deriva-
tives: Let the function to be approximated F∗ ∈ Cn, the mapping of neural network
F : Rd0 → R and NN a

din,dout
be the set of single-layer neural networks with ac-

tivation function fa : R → R, input dimension din ∈ N and output dimension
1. Then, if the activation function (non-constant) is fa ∈ Cn(R), then NN a

din,1
arbitrarily approximates F∗ and all its derivatives up to order n.

Theorem 4.2.3 (Eldan et al., 2016). The Power of depth of Neural Networks: There
exists a simple function on Rd, expressible by a small 3-layer feedforward neural
networks, which cannot be approximated by any 2-layer network, to more than a
certain constant accuracy, unless its width is exponential in the dimension.

According to Theorem 4.2.2, it is crucial to have an activation function that
is n-differentiable if the approximation of the nth-derivative of the function
F∗ is required. Theorem 4.2.3 motivates the choice of deep network. It states
that the depth of network can improve the predictive capabilities of network.
However, it is worth noting that network deeper than 4 hidden layers does
not provide much performance gain (Ioffe et al., 2015).

4.3 Common Pitfalls and Remedies

Here we discuss some common pitfalls in ANN training and the correspond-
ing remedies.



4.3. Common Pitfalls and Remedies 31

4.3.1 Loss Function Stagnation

During training, the loss function may display infinitesimal improvements
after each epoch.

To resolve this problem:

• Increase the batch size could potentially fix this issue as this helps the
ANN model to learn better the relationships between data samples and
data labels before updating the parameters.

• Increase the learning rate. Too small of learning rate can cause the
ANN model to stuck in local minima.

• Use a deeper network. According to the power of depth theorem,
deeper network tends to perform better than shallower ones. How-
ever, if the NN model already have 4 hidden layers then this methods
may not be suitable as there is not much performance gain (see Chapter
4.2.1).

• Use a different activation function for the output layer. Make sure the
range of the output activation function is appropriate for the problem.

4.3.2 Loss Function Fluctuation

During training, the loss function may display infinitesimal improvements
after each epoch. Potential fix includes:

• Increase the batch size. The ANN model might not be able to inter-
pret the true relationships between input and output data before each
update when the batch size is too small.

• Lower the initialised learning rate.

4.3.3 Over-fitting

Over-fitting occurs when the ANN model is able to perform well on training
data but fail to generalise on unseen test data.

Potential fix includes:

• Reduce the complexity of ANN model. Limit the number of hidden
layers to 4, as (Eldan et al., 2016) shows not much advantage can be
achieved beyond 4 hidden layers. Furthermore, experiment with nar-
rower (less neurons) hidden layer.

• Introduce early stopping. Reduce the number of epochs if more epoch
shows only little improvements. It is important to note that

• Regularisation. This can reduce the complexity of loss function and
speed up convergence.



32 Chapter 4. Artificial Neural Networks

• K-fold Cross-validation. It works by splitting the training data into
K equal-size portions. The K-1 portions are used for training and 1
portion is used for validation. This is repeated with different portions
for validation K times.

4.3.4 Under-fitting

Under-fitting occurs when the ANN model fails to make sense of the rela-
tionships between data samples and labels.

Potential fix includes:

• Increase size of training data. Complex functional mappings require
the ANN model the train on more data before it can learn the relation-
ships well.

• Increase the depth of model. It is very likely that the model is not deep
enough for the problem. As a rule of thumb, limit the number of hidden
layers to 3-4 for complex problems.

4.4 Application in Finance: ANN Image-based Im-
plicit Method for Implied Volatility Approxi-
mation

For ANN’s application in implied volatility predictions, we apply the image-
based implicit method proposed by (Horvath et al., 2019). It is allegedly a
powerful and robust method for approximating implied volatility. Rather
than using one implied volatility value as network output, the image-based
implicit method uses the entire implied volatility surface as the output. The
implied volatility surface is represented by 10× 10 "pixels", with each pixel
corresponds to one maturity and one strike price. The input data correspond-
ing to one implied volatility surface output is all the model parameters ex-
cept for strike price and maturity, they are implicitly being learned by the
network. This method offers the following benefits:

• More information is learned by the network with less input data. The
information of neighbouring volatility points is incorporated in the train-
ing process.

• The network is learning the mapping of model parameters and the im-
plied volatility surface directly. Volatility smile and term structure are
available simultaneously and so it is more efficient than having only
one single implied volatility value as output.

• The neighbouring volatility points can be numerically approximated
almost instantly if intended.



4.4. Application in Finance: ANN Image-based Implicit Method for Implied
Volatility Approximation 33

...

O1

O2

O3

O98

O99

O100

NN Output
layer

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

O11 O12 O13 O14 O15 O16 O17 O18 O19 O20

O21 O22 O23 O24 O25 O26 O27 O28 O29 O30

O31 O32 O33 O34 O35 O36 O37 O38 O39 O40

O41 O42 O43 O44 O45 O46 O47 O48 O49 O50

O51 O52 O53 O54 O55 O56 O57 O58 O59 O60

O61 O62 O63 O64 O65 O66 O67 O68 O69 O70

O71 O72 O73 O74 O75 O76 O77 O78 O79 O80

O81 O82 O83 O84 O85 O86 O87 O88 O89 O90

O91 O92 O93 O94 O95 O96 O97 O98 O99 O100

Implied Volatility Surface

FIGURE 4.2: The "pixels" of implied volatility surface are repre-
sented by the outputs of neural network.





35

Chapter 5

Data

In this chapter we discuss about the data for our applications. We explain
how the data is generated and some essential data pre-processing proce-
dures.

Simulated data is chosen to train the ANN model mainly due to regula-
tory purposes. One might argue that training ANN with market data directly
would yield better predictions. However, the lack of evidence for the stabil-
ity and robustness of this method is yet to be found. Furthermore, there is no
straightforward interpretation between inputs and outputs of ANN model if
it is trained using this method. The main advantage of training ANN with
simulated data is that the functional relationship is known and so the model
is tractable. This property is important as tractable models tend to be more
transparent and is required by regulations.

For neural network computation, Python is the logical language choice
as it has many powerful machine learning libraries, such as Keras. To obtain
good results, we require 5, 000, 000 rows of data for the ANN experiment.
Hence, we choose C++ instead of Python for the data generation process as it
is computationally faster. We also use the lightweight header-only Python
library, pybind11 that can harmoniously integrate C++ and Python in one
project (see Appendix A for tutorial on pybind11).

5.1 Data Generation and Storage

The data generation process is done entirely in C++ mainly because of its
execution speed. Initially, we consider applying GPU parallel computing
to speed up the process even further. After consulting with the supervisor,
we decided to use the "std::future" class template instead. The "std::future"
belongs to the standard C++11 library and it is very simple to implement
compared to parallel computing. It allows the C++ program to run multi-
ple functions asynchronously on different threads (see page 942 in (Duffy,
2018) for example). Our machine contains 2 physical cores, with 2 threads
per physical core. This allows us to run 4 operations asynchronously without
overhead costs and therefore in theory, improves the data generation speed
by four-fold. Note that asynchronous programming is not meant to replace
parallel computing completely. In cases where execution speed is absolutely
critical, parallel computing should be used. Without asynchronous program-
ming, the data generation process for 5,000,000 rows of Heston option price



36 Chapter 5. Data

data would take more than 8 hours. Now, it only takes less than 2 hours to
complete the process.

We follow the steps outline in Appendix A to wrap the C++ program
using the pybind11 Python library. The wrapped C++ function can be called
in Python just like any other Python libraries. The pybind11 library is very
similar to the Boost library conceptually. The reason we choose pybind11 is
that it is a lightweight header-only library that is easy to use. This enables us
to enjoy both the execution speed of C++ and the access to machine learning
libraries of Python at the same time.

After the data is generated, it is stored in MySQL so that we do not need
to re-generate the data each time we restart the computer or when the Python
IDE crashes unexpectedly. We use the mysql connector Python library to com-
municate with MySQL on Python.

5.1.1 Heston Call Option Data

We follow the method and theory described in Chapter 3 to compute the
call option price under Heston model. We only consider call option in this
project. To train ANN that can also predict put option price, one can simply
add an extra input feature that only takes two values: "1’ or "-1" with "1"
represents call option and "-1" represents put option.

For this application we generated 5,000,000 rows of data that is uniformly
distributed over a specified range. In this context, one row of data contains
all the input features and the corresponding output. We use 10 model param-
eters as the input features. They include spot price (S), strike price (K), risk-
free rate (r), dividend yield (D), current/instantaneous volatility (ν), maturity
(T), long term volatility (θ), mean-reversion rate (κ), volatility of volatility (ξ)
and correlation (ρ). In this case there will only be one output that is the call
option price. See table 5.1 for their respective range.

TABLE 5.1: Heston Model Call Option Data

Model Parameters Range

Input

Spot Price (S) ∈ [20, 80]
Strike Price (K) ∈ [40, 55]
Risk-free rate (r) ∈ [0.03, 0.045]
Dividend Yield (D) ∈ [0, 0.1]
Instantaneous Volatility (ν) ∈ [0.2, 0.6]
Maturity (T) ∈ [0.03, 2.0]
Long Term Volatility (θ) ∈ [0.2, 1.0]
Mean Reversion Rate (κ) ∈ [0.1, 1.0]
Volatility of Volatility (ξ) ∈ [0.2, 0.5]
Correlation (ρ) ∈ [−0.95, 0.95]

Output Call Option Price (C) ∈ R>0



5.1. Data Generation and Storage 37

5.1.2 Heston Implied Volatility Data

We generate the Heston implied volatility data with the theory explained
in Chapter 3. For ANN application in implied volatility approximation, we
decided to use the image-based implicit method in which the ANN output
layer dimension is 100 with each output represents one pixel on the implied
volatility surface.

Using this method, we need 100 times more data in order to have the
same number of distinct rows of data as the normal, point-wise method (e.g
Heston Call Option Pricing) does. However, due to hardware constraints,
we decided to generate 10,000,000 rows of uniformly distributed data. That
translates to only 100,000 distinct rows of data.

We use 6 model parameters as the input features. They include spot
price (S), current/instantaneous volatility (ν), long term volatility (θ), mean-
reversion rate (κ), volatility of volatility (ξ) and correlation (ρ).

Note that strike price and maturity are not being used as the input fea-
tures as mentioned in Chapter 4.4. This is because the shape of one full im-
plied volatility surface is dependent on the 6 model parameters mentioned
above. The strike price and maturity correspond to one specific point on
the full implied volatility surface. Nevertheless, we still require these two
parameters to generate implied volatility data. We use the following strike
price and maturity values:

• strike price = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4}

• maturity = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}

In this case there will be 10× 10 = 100 outputs that is the implied volatil-
ity surface. See table 5.2 for their respective range.

TABLE 5.2: Heston Model Implied Volatility Data

Model Parameters Range

Input

Spot Price (S) ∈ [0.2, 2.5]
Instantaneous Volatility (ν) ∈ [0.2, 0.6]
Long Term Volatility (θ) ∈ [0.2, 1.0]
Mean Reversion Rate (κ) ∈ [0.1, 1.0]
Volatility of Volatility (ξ) ∈ [0.2, 0.5]
Correlation (ρ) ∈ [−0.95, 0.95]

Output Implied Volatility Surface (σimp) ∈ R10×10
>0

5.1.3 Rough Heston Call Option Data

Again we follow the theory in Chapter 3 and implement it in C++ to generate
call option price under rough Heston model.

Similarly, we only consider call option here and generate 5,000,000 rows
of data. We use 9 model parameters as the input features. They include strike
price (K), risk-free rate (r), current/instantaneous volatility (ν), maturity (T),
long term volatility (θ), mean-reversion rate (κ), volatility of volatility (ξ),



38 Chapter 5. Data

correlation (ρ) and Hurst parameter (H). In this case there will only be one
output that is the call option price. See table 5.3 for their respective range.

TABLE 5.3: Rough Heston Model Call Option Data

Model Parameters Range

Input

Strike Price (K) ∈ [0.5, 5]
Risk-free rate (r) ∈ [0.2, 0.5]
Instantaneous Volatility (ν) ∈ [0., 1.0]
Maturity (T) ∈ [0.1, 3.0]
Long Term Volatility (θ) ∈ [0.01, 0.1]
Mean Reversion Rate (κ) ∈ [1.0, 4.0]
Volatility of Volatility (ξ) ∈ [0.01, 0.5]
Correlation (ρ) ∈ [−0.95, 0.95]
Hurst Parameter (H) ∈ [0.05, 0.1]

Output Call Option Price (C) ∈ R>0

5.1.4 Rough Heston Implied Volatility Data

Finally, We generate the rough Heston implied volatility data with the the-
ory explained in Chapter 3. As before, we also use the image-based implicit
method.

The data size we use is 10,000,000 rows of data and that translates to
100,000 distinct rows of data. We use 7 model parameters as the input fea-
tures. They include spot price (S), current/instantaneous volatility (ν), long
term volatility (θ), mean-reversion rate (κ), volatility of volatility (ξ), corre-
lation (ρ) and Hurst parameter (H). We use the following strike price and
maturity values:

• strike price = {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4}

• maturity = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}

As before, there will be 10× 10 = 100 outputs that is the rough Heston
implied volatility surface. See table 5.4 for their respective range.

TABLE 5.4: Heston Model Implied Volatility Data

Model Parameters Range

Input

Spot Price (S) ∈ [0.2, 2.5]
Instantaneous Volatility (ν) ∈ [0.2, 0.6]
Long Term Volatility (θ) ∈ [0.2, 1.0]
Mean Reversion Rate (κ) ∈ [0.1, 1.0]
Volatility of Volatility (ξ) ∈ [0.2, 0.5]
Correlation (ρ) ∈ [−0.95, 0.95]
Hurst Parameter (H) ∈ [0.05, 0.1]

Output Implied Volatility Surface (σimp) ∈ R10×10
>0



5.2. Data Pre-processing 39

5.2 Data Pre-processing

In this section we discuss about some necessary data pre-processing pro-
cedures. We talk about data splitting for validation and evaluation (test-
ing), data standardisation and normalisation, and data partitioning for K-
fold cross validation.

5.2.1 Data Splitting: Train - Validate - Test

Generally, not 100% of available data is used for training. We would reserve
some of the data for validation and for performance evaluation.

We split the data into three sets: 70% (train), 15% (validate) and 15% (test).
The first 70% of data is used for training whilst 15% of the data is used for
validation during training. The last 15% is for evaluating the trained ANN’s
predictive accuracy.

The validation data set is the data set used for tuning the hyperparame-
ters of the ANN. This is important to help prevent over-fitting of the network.
The test data set is not used during training. It is the unseen (out-of-sample)
data that is used for evaluating the trained ANN’s predictions.

5.2.2 Data Standardisation and Normalisation

Before the data is fed into the ANN for training, it is absolutely essential to
scale the data to speed up convergence and improve performance.

The magnitude of the each data feature is different. It is essential to re-
scale the data so that the ANN model will not misinterpret their relative im-
portance based on their magnitude. Typical scaling techniques include stan-
dardisation and normalisation.

Data standardisation is defined as

xscaled =
x− xmean

xstd
(5.1)

where

• x is data

• xmean is the mean of that data feature

• xstd is the standard deviation of that data feature

(Horvath et al., 2019) claims that this works especially well for quantity that
is positively unbounded such as implied volatility.

For other model parameters, we apply data normalisation, which is de-
fined as

xscaled =
2x− (xmax + xmin)

xmax + xmin
∈ [−1, 1] (5.2)

where

• x is data



40 Chapter 5. Data

• xmax is the maximum value of that data feature

• xmin is the minimum value of that data feature

After data scaling (standardisation or normalisation), ANN is able to learn
the true relationships between inputs and outputs without the bias from the
difference in their magnitudes

5.2.3 Data Partitioning

In this section, we explain how the data is partitioned for K-fold cross vali-
dation.

First, we shuffle the entire training data set. Then, the entire data set is
divided into K equal sized portions. For each portion, we use it as the test
data set and we train the ANN on the other K− 1 portions. This is repeated
K times, with each of the K portions used exactly once as the test data set.
The average of K results is the performance measure of the model.

FIGURE 5.1: shows how the data is partitioned for 5-fold cross
validation. Adapted from (Chapter 2 Modeling Process: k-fold

cross validation).



41

Chapter 6

Neural Networks Architecture and
Experimental Setup

We start this chapter by discussing the appropriate ANN architecture and
experimental setup for our applications. We apply ANN to four different
applications: option pricing under Heston model, Heston implied volatility
surface approximation, option pricing under rough Heston model and rough
Heston implied volatility surface approximation. We first apply ANN in He-
ston model as a concept validation and then proceed to rough Heston model.

Subsequently, we discuss about the relevant evaluation metrics and vali-
dation methods for our ANN models. Finally, we end this chapter with the
implementation steps for ANN in Keras.

6.1 Neural Networks Architecture

Configuring ANN’s architecture is a combination of art and science. It re-
quires experience and systematic experiment to decide the right parameters
and architecture for a specific problem. For a particular problem, there might
be multiple designs that are appropriate. To begin with, we would use the
network architecture used by (Horvath et al., 2019) and made adjustment to
the hyperparameters if it performs poorly for our applications.



42 Chapter 6. Neural Networks Architecture and Experimental Setup

...
...

...
...

I1

I10

H1

H2

H29

H30

H1

H2

H29

H30

H1

H2

H29

H30

O1

Input
layer

Ouput
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

FIGURE 6.1: Typical ANN Architecture for Option Pricing Ap-
plication



6.1. Neural Networks Architecture 43

...
...

...
...

...

I1

I10

H1

H2

H29

H30

H1

H2

H29

H30

H1

H2

H29

H30

O1

O2

O3

O98

O99

O100

Input
layer

Ouput
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

FIGURE 6.2: Typical ANN Architecture for Implied Volatility
Surface Approximation

6.1.1 ANN Architecture: Option Pricing under Heston Model

ANN with 3 hidden layers is approapriate for this application. The number
of neurons will be 50 with exponential linear unit (ELU) as the activation
function for each hidden layer.

Initially, the rectified linear activation function (ReLU) was considered. It
is the choice for many applications as it can overcome the vanishing gradi-
ent problem whilst being less computationally expensive compared to other
activation functions. However it has some major drawbacks:

• The nth-derivative of ReLU is not continuous for all n > 0.

• The ReLU cannot produce negative outputs.

• For activation x < 0, ReLU has zero gradient.

From Theorem 4.2.2, we know choosing a n-differentiable activation func-
tion is necessary for computing the nth-derivatives of the functional map-
ping. This is crucial for our application because we would be interested in



44 Chapter 6. Neural Networks Architecture and Experimental Setup

option Greeks computation using the same ANN if it shows promising re-
sults for option pricing. For risk management purposes, selecting an activa-
tion function that option Greeks can be calculated is crucial.

The obvious alternative would be the ELU (defined in Chapter 4.1.4). For
x < 0, it has a smooth output until it approaches to−α. When x > 0, the out-
put of ELU is positively unbounded, which is suitable for our application as
the values of option price and implied volatility are also in theory, positively
unbounded.

Since our problem is a regression problem, linear activation function (de-
fined in Chapter 4.1.5) would be appropriate for the output layer as its output
is unbounded. We discover that batch size of 200 and number of epochs of
30 would yield good accuracy.

To summarise, the ANN model for Heston Option Pricing is,

• Input Layer: 10 neurons

• Hidden Layer 1: 50 neurons, ELU as activation function

• Hidden Layer 2: 50 neurons, ELU as activation function

• Hidden Layer 3: 50 neurons, ELU as activation function

• Output Layer: 1 neuron, linear function as activation function

6.1.2 ANN Architecture: Implied Volatility Surface of Hes-
ton Model

For approximating the full implied volatility surface of Heston model we
apply the image-based implicit method (see Chapter 4.4). This implies the
output dimension is 100.

We use 3 hidden layers with 80 neurons. The activation function for hid-
den layers is exponential linear unit (ELU). As before we use linear activation
function for the output layer. We discover that batch size of 20 and 200 epochs
would yield good accuracy. Since the number of epochs is relatively high, we
introduce an early stopping feature to stop the training when validation loss
stops improving for 25 epochs.

To summarise, the ANN model for Heston implied volatility surface
approximation is,

• Input Layer: 6 neurons

• Hidden Layer 1: 80 neurons, ELU as activation function

• Hidden Layer 2: 80 neurons, ELU as activation function

• Hidden Layer 3: 80 neurons, ELU as activation function

• Hidden Layer 4: 80 neurons, ELU as activation function

• Output Layer: 100 neurons, linear function as activation function



6.2. Performance Metrics and Validation Methods 45

6.1.3 ANN Architecture: Option Pricing under Rough Hes-
ton Model

For option pricing under rough Heston model, the ANN model for rough
Heston Option Pricing is,

• Input Layer: 9 neurons

• Hidden Layer 1: 50 neurons, ELU as activation function

• Hidden Layer 2: 50 neurons, ELU as activation function

• Hidden Layer 3: 50 neurons, ELU as activation function

• Output Layer: 1 neuron, linear function as activation function

As before, we use batch size of 200 and 30 epochs.

6.1.4 ANN Architecture: Implied Volatility Surface of Rough
Heston Model

The ANN model for rough Heston implied volatility surface approxima-
tion is,

• Input Layer: 7 neurons

• Hidden Layer 1: 80 neurons, ELU as activation function

• Hidden Layer 2: 80 neurons, ELU as activation function

• Hidden Layer 3: 80 neurons, ELU as activation function

• Output Layer: 100 neuron, linear function as activation function

We use batch size of 20 and number of epochs of 200 with early stopping fea-
ture to stop the training when validation loss stops improving for 25 epochs.

6.2 Performance Metrics and Validation Methods

We require some metrics to evaluate the performance of the ANN in terms of
accuracy and speed.

For accuracy, we have introduced the MSE and MAE in Chapter 4.1.4. It
is common to use the coefficient of determination (R2) to quantify the per-
formance of a regression model. It is a statistical measure that quantify the
proportion of the variances for dependent variables that is explained by in-
dependent variables. The formula is

R2 = 1−
∑n

i=1(yi,actual − yi,predict)
2

∑n
i=1(yi,actual − ȳactual)2 (6.1)



46 Chapter 6. Neural Networks Architecture and Experimental Setup

We also suggest a user-defined accuracy metrics: Maximum Absolute Er-
ror. It is defined as

Max Abs. Error = max(|yi,actual − yi,predict|) (6.2)

This metric provides a measure of how large the error could be in the worst
case scenario. It is especially important from a risk management perspective.

As for the run-time performance of ANN. We simply use the Python built-
in timer function to quantify this property.

In Chapter 5.2.3 we explained about the data partitioning process. The
motivation for partitioning data is to do K-fold cross validation. Cross vali-
dation is a statistical technique to assess how well the predictive model can
be generalised to an independent data set. It is a good tool for identifying
over-fitting.

As explained earlier, the process involves training and testing different
permutation of the partitioned data sets multiple times. The indication of a
well generalised model is that the error magnitudes in each round are consis-
tent with each other and their average. We select K = 5 for our applications.



6.3. Implementation of ANN in Keras 47

6.3 Implementation of ANN in Keras

In this section we outline the standard ANN computation process using Keras.

1. Construct the ANN model by specifying the number of input neurons,
number of hidden neurons, number of hidden layers, number of out-
put neurons and the activation functions for each layer. Print model
summary to check for errors.

2. Configure the settings of the model by using the "compile" function.
We select the MSE as the loss function, and we specify MAE, R2 and
our user-defined maximum absolute error as the metrics. For all of our
applications we choose ADAM as the optimisation algorithm. To pre-
vent over-fitting, we use the early stopping function, especially when
the number of epochs is high. It is important to note that the validation
loss (not training loss) should be used as the early stopping criteria.
This means the training will stop early if there is no reduction in vali-
dation loss.

3. Starts training the ANN model. It is important to specify the "validation
split" argument here for splitting the training data into a train set and
validation set. Note that the test set should not be used as validation set,
it should be reserved for evaluating ANN’s predictions after training.

4. When the training is complete, generate the plot of MSE (loss function)
versus number of epochs to visualise the training process. MSE should
decline gradually and then level off as number of epochs increases. See
Chapter 4.3 for potential training issues and remedies.

5. Apply 5-fold cross validation to check for over-fitting. Evaluate the
trained model using "evaluate" function.

6. Generate predictions. Visualise the predictions by plotting predicted
values versus actual values on the same graph.

See Appendix C for Python code example.



48
C

hapter
6.

N
euralN

etw
orks

A
rchitecture

and
Experim

entalSetup

6.4 Summary of Neural Networks Architecture

TABLE 6.1: Summary of Neural Networks Architecture for Each Application

ANN Models Applications Input
Layer

Hidden Layers Output
Layer

Batch
Size

Epoch

Heston Option Pricing
ANN

Heston Call Option Pricing 10 neu-
rons

3 layers × 50 neu-
rons

1 neuron 200 30

Heston Implied Volatility
ANN

Heston Implied Volatility Sur-
face

6 neurons 3 layers × 80 neu-
rons

100 neurons 20 200

Rough Heston Option
Pricing ANN

Rough Heston Call Option Pric-
ing

9 neurons 3 layers × 50 neu-
rons

1 neuron 200 30

Rough Heston Implied
Volatility ANN

Rough Heston Implied Volatil-
ity Surface

7 neurons 3 layers × 80 neu-
rons

100 neurons 20 200



49

Chapter 7

Results and Discussions

In this chapter we present our results and discuss our findings.

7.1 Heston Option Pricing ANN Results

Figure 7.1 shows the loss function plot of Heston Option Pricing ANN learn-
ing curves. The loss function used here is the MSE. As the ANN is trained,
both the curves of training loss function and validation loss function decline
until they converge to a point. It took less than 30 epochs for the ANN to
reach a satisfactory level of accuracy. There is a small gap between the train-
ing loss function and validation loss function. This indicates the ANN model
is well trained.

FIGURE 7.1: Plot of MSE Loss Function vs No. of Epochs for
Heston Option Pricing ANN.

Table 7.1 summarises the error metrics of Heston Option Pricing ANN
model’s predictions on unseen test data. The MSE, MAE, Max Abs. Error
and R2 are 2.00× 10−6, 9.58× 10−4, 6.50× 10−3 and 0.999 respectively. The
low values in error metrics and high R2 value imply the ANN model gen-
eralises well and is able to give high accuracy predictions for option price



50 Chapter 7. Results and Discussions

under Heston model. Figure 7.2 attests its high accuracy. Almost all of the
predictions lie on the perfect predictions line (red line).

TABLE 7.1: Error Metrics of Heston Option Pricing ANN Pre-
dictions on Unseen Data

MSE MAE Max Abs. Error R2

2.00× 10−6 9.58× 10−4 6.50× 10−3 0.999

FIGURE 7.2: Plot of Predicted vs Actual values for Heston Op-
tion Pricing ANN.

TABLE 7.2: 5-fold Cross Validation Results of Heston Option
Pricing ANN.

MSE MAE Max Abs. Error
Fold 1 5.78× 10−7 5.45× 10−4 2.04× 10−3

Fold 2 9.90× 10−7 7.69× 10−4 2.40× 10−3

Fold 3 7.15× 10−7 6.21× 10−4 2.20× 10−3

Fold 4 1.24× 10−6 8.67× 10−4 2.53× 10−3

Fold 5 6.54× 10−7 5.79× 10−4 2.21× 10−3

Average 8.36× 10−7 6.76× 10−4 2.27× 10−3

Table 7.2 shows the results from 5-fold cross validation which again con-
firms the ANN model can give accurate predictions and generalises well to
unseen data. The values of each fold are consistent with each other and with
their average values.



7.2. Heston Implied Volatility ANN Results 51

7.2 Heston Implied Volatility ANN Results

Figure 7.3 shows the loss function plot of Heston Implied Volatility ANN
learning curves. Again, we use the MSE as the loss function here. We can see
that the validation loss curve experiences some fluctuations during training.
We experimented with various ANN setups and this is the least fluctuating
learning curve we can achieve. Despite the fluctuations, the overall value
of validation loss function declines to a satisfactory low level and the gap
between validation loss and training loss is negligible. Due to the compara-
tively more complex ANN architecture, it took about 200 epochs for the ANN
to reach a satisfactory level of accuracy.

FIGURE 7.3: Plot of MSE Loss Function vs No. of Epochs for
Heston Implied Volatility ANN.

Table 7.3 summarises the error metrics of Heston Implied Volatility ANN
model’s predictions on unseen test data. The MSE, MAE, Max Abs. Error and
R2 are 6.24× 10−4, 1.27× 10−2, 3.71× 10−1 and 0.999 respectively. The low
values in error metrics and high R2 value imply the ANN model generalises
well and is able to give accurate predictions for implied volatility surface
under Heston model. Figure 7.4 shows the ANN predicted volatility smiles
and the actual smiles for 10 different maturities. We can see that almost all of
the predicted values are consistent with the actual values.

TABLE 7.3: Accuracy Metrics of Heston Implied Volatility ANN
Predictions on Unseen Data

MSE MAE Max Abs. Error R2

6.24× 10−4 1.27× 10−2 3.71× 10−1 0.999



52
C

hapter
7.

R
esults

and
D

iscussions

FIGURE 7.4: Heston Implied Volatility Smiles ANN Predictions vs Actual Values.



7.3. Rough Heston Option Pricing ANN Results 53

FIGURE 7.5: Mean Absolute Error of Full Heston Implied
Volatility Surface ANN Predictions on Unseen Data.

Figure 7.5 shows the MAE values of Heston implied volatility ANN pre-
dictions across the entire implied volatility surface. The largest MAE value
is 0.0045. A large area of the surface has MAE values lower than 0.0030. It is
worth noting that the accuracy is relatively poor when the strike price is at
the extremes and maturity is small. However, the ANN gives good predic-
tions overall for the whole surface.

The 5-fold cross validation results for Heston implied volatility ANN
model shows consistent values. The results is summarised in Table 7.4. The
consistent values indicate the ANN model is well-trained and is able to gen-
eralise to unseen test data.

TABLE 7.4: 5-fold Cross Validation Results of Heston Implied
Volatility ANN

MSE MAE Max Abs. Error
Fold 1 8.15× 10−4 1.13× 10−2 3.88× 10−1

Fold 2 4.74× 10−4 1.08× 10−2 3.13× 10−1

Fold 3 1.37× 10−3 1.74× 10−2 4.46× 10−1

Fold 4 3.38× 10−4 8.61× 10−3 2.19× 10−1

Fold 5 4.60× 10−4 1.02× 10−2 2.67× 10−1

Average 6.92× 10−4 1.12× 10−2 3.27× 10−1

7.3 Rough Heston Option Pricing ANN Results

Figure 7.6 shows the loss function plot of Rough Heston Option Pricing ANN
learning curves. As before, MSE is used as the loss function. As the ANN
progresses, both the curves of training loss function and validation loss func-
tion decline until they converge to a point. Since this is a relatively simple



54 Chapter 7. Results and Discussions

model, it took less than 30 epochs of training to reach a good level of accuracy.
The small discrepancy between the training loss and validation indicates the
ANN model is well-trained.

FIGURE 7.6: Plot of MSE Loss Function vs No. of Epochs for
Rough Heston Option Pricing ANN.

Table 7.5 summarises the error metrics of Rough Heston Option Pricing
ANN model’s predictions on unseen test data. The MSE, MAE, Max Abs.
Error and R2 are 9.00× 10−6, 2.28× 10−3, 1.76× 10−1 and 0.999 respectively.
These metrics imply the ANN model generalises well and is able to give high
accuracy predictions for option prices under rough Heston model. Figure 7.7
attests its high accuracy again. We can see that most of the predictions lie on
the perfect predictions line (red line).

TABLE 7.5: Accuracy Metrics of Rough Heston Option Pricing
ANN Predictions on Unseen Data.

MSE MAE Max Abs. Error R2

9.00× 10−6 2.28× 10−3 1.76× 10−1 0.999



7.4. Rough Heston Implied Volatility ANN Results 55

FIGURE 7.7: Plot of Predicted vs Actual values for Rough Hes-
ton Pricing ANN.

TABLE 7.6: 5-fold Cross Validation Results of Rough Heston
Option Pricing ANN

MSE MAE Max Abs. Error
Fold 1 3.79× 10−6 1.35× 10−3 5.99× 10−3

Fold 2 2.33× 10−6 9.96× 10−4 4.89× 10−3

Fold 3 2.06× 10−6 9.88× 10−3 4.41× 10−3

Fold 4 2.16× 10−6 1.08× 10−3 4.07× 10−3

Fold 5 1.84× 10−6 1.01× 10−3 3.74× 10−3

Average 2.44× 10−6 4.62× 10−3 1.08× 10−3

The highly consistent values from 5-fold cross validation again confirm
the ANN model is able to generalise to unseen data.

7.4 Rough Heston Implied Volatility ANN Results

Figure 7.8 shows the loss function plot of Rough Heston Implied Volatility
ANN learning curves. We can see that the validation loss curve experiences
some fluctuations during the training. Again, we select the least fluctuating
setup. Despite the fluctuations, the overall value of validation loss function
declines to a satisfactory low level and the discrepancy between validation
loss and training loss is negligible. Initially, the training epoch is 200 but it
was stopped early at around 85 since the validation loss value has not im-
proved for 25 epochs. It achieves a good accuracy nonetheless.



56 Chapter 7. Results and Discussions

FIGURE 7.8: Plot of MSE Loss Function vs No. of Epochs for
Rough Heston Implied Volatility ANN.

Table 7.7 summarises the error metrics of Rough Heston Implied Volatility
ANN model’s predictions on unseen test data. The MSE, MAE, Max Abs.
Error and R2 are 5.66× 10−4, 1.08× 10−2, 3.49× 10−1 and 0.999 respectively.
These metrics show the ANN model can produce accurate predictions on
unseen data. This is again confirmed by Figure 7.9, which shows the ANN
predicted volatility smiles and the actual smiles for 10 different maturities.
We can see that almost all of the predicted values are consistent with the
actual values.

TABLE 7.7: Accuracy Metrics of Rough Heston Implied Volatil-
ity ANN Predictions on Unseen Data.

MSE MAE Max Error R2

5.66× 10−4 1.08× 10−2 3.49× 10−1 0.999



7.4.
R

ough
H

eston
Im

plied
Volatility

A
N

N
R

esults
57

FIGURE 7.9: Rough Heston Implied Volatility Smiles ANN Predictions vs Actual Values.



58 Chapter 7. Results and Discussions

FIGURE 7.10: Mean Absolute Error of Full Rough Heston Im-
plied Volatility Surface ANN Predictions on Unseen Data.

Figure 7.10 shows the MAE values of Rough Heston Implied Volatility
ANN predictions across the entire implied volatility surface. The largest
MAE value is below 0.0030. A large area of the surface has MAE values lower
than 0.0015. It is worth noting that the accuracy is relatively poor when the
strike price and maturity values are small. However, the ANN gives good
predictions overall for the whole surface. In fact, it is more accurate than the
Heston implied volatility ANN model despite having one extra input and
similar architecture. We think this is entirely due to the stochastic nature of
the optimiser.

The 5-fold cross validation results for rough Heston implied volatility
ANN model shows consistent values just like the previous three cases. The
results is summarised in Table 7.8. The consistency in values indicate the
ANN model is well-trained and is able to generalise to unseen test data.

TABLE 7.8: 5-fold Cross Validation Results of Rough Heston
Implied Volatility ANN.

MSE MAE Max Error
Fold 1 8.15× 10−4 1.13× 10−2 3.88× 10−1

Fold 2 4.74× 10−4 1.08× 10−2 3.13× 10−1

Fold 3 1.37× 10−3 1.74× 10−2 4.46× 10−1

Fold 4 3.38× 10−4 8.61× 10−3 2.19× 10−1

Fold 5 4.60× 10−4 1.02× 10−2 2.67× 10−1

Average 6.92× 10−4 1.12× 10−2 3.27× 10−1



7.5. Run-time Performance 59

7.5 Run-time Performance

In this section we present the training time and the execution speed of ANN
versus traditional methods. The speed tests are run on a machine with Intel
i5-7200U chip (up to 3.10 GHz) and 8GB of RAM.

Table 7.9 summarises the training time required for each application. We
can see that although the training time per epoch for option pricing applica-
tions is higher than that for implied volatility applications, the resulting total
training time is similar for both types of applications. This is because number
of epochs for training implied volatility ANN models is higher.

We also emphasise that the number of distinct rows of data available for
implied volatility ANN training is less. Thus, the training time is similar to
that of option pricing ANN training despite the more complex ANN archi-
tecture.

TABLE 7.9: Training Time

Applications Training Time per Epoch Total Training Time
Heston Option Pricing 30 s 900 s
Heston Implied Volatility 5 s 1000 s
rHeston Option Pricing 30 s 900 s
rHeston Implied Volatility 5 s 1000 s

TABLE 7.10: Execution Time for Predictions using ANN and
Traditional Methods

Applications Traditional Methods ANN
Heston Option Pricing 8.84 ms 57.9 ms
Heston Implied Volatility 2.31 ms 43.7 ms
rHeston Option Pricing 6.52 ms 52.6 ms
rHeston Implied Volatility 2.87 ms 48.3 ms

Table 7.10 summarises the execution time for generating predictions using
ANN and traditional methods. Before the experiment, we expect the ANN to
generate predictions faster. However, results shows that ANN is actually up
to 7 times slower than the traditional methods for option pricing (both Hes-
ton and rough Heston); up to 18 times slower than the traditional methods
for implied volatility surface approximation (both Heston and rough Hes-
ton). This shows the traditional approximation methods are more efficient.





61

Chapter 8

Conclusions and Outlook

To summarise, results shows that ANN has the ability to approximate op-
tion price and implied volatility under Heston and rough Heston models to
a high degree of accuracy. However, the efficiency of ANN is not as good
as the traditional methods. Hence, we conclude that such an approach may
therefore be considered an ineffective alternative. There are more efficient
methods such as the numerical integration of FFT for option price computa-
tion. The traditional method we used for approximating implied volatility
does not even require any numerical schemes and hence its efficiency.

As for the future projects, it would be interesting to investigate the proven
rough Bergomi model applications with exotic options such as lookback and
digital options. Moreover, it would also be worthwhile to apply gradient-
free optimisers for ANN training. Some of the interesting examples include
differential evolution, dual annealing and simplicial homology global opti-
misers.





63

Appendix A

pybind11: A step-by-step tutorial
with examples

This tutorial assumes basic knowledge of C++ and Python.

Sources: Create a C++ extension for Python, Using the C++ eigen library to calcu-
late matrix inverse and determinant, pybind11 Documentation, Eigen: The Matrix
Class

A.1 Software Prerequisites

• Visual Studio 2017 or later with both the Desktop Development with
C++ and Python Development workloads installed with default op-
tions.

• In the Python Development workload, also select the box on the right
for Python native development tools. This option sets up most of the
configuration required. (This option also includes the C++ workload
automatically.)

Source: Create a C++ extension for Python



64 Appendix A. pybind11: A step-by-step tutorial with examples

A.2 Create a Python Project

1. To create a Python project in Visual Studio, select File > New > Project.
Search for "Python", select the Python Application template, give it a
suitable name and location, and select OK.

2. pybind11 requires that you use a 32-bit Python interpreter (Python 3.6
or above recommended). In the Solution Explorer window of Visual
Studio, expand the project node, then expand the Python Environ-
ments node. If you don’t see a 32-bit environment as the default (either
in bold, or labeled with global default), then right-click the Python
Environments node and select Add Environment, or select Add Envi-
ronment from the environment drop-down in the Python toolbar.

Once in the Add Environment dialog box, select the Existing environ-
ment tab, then select the 32-bit interpreter from the Environment drop
down list.

If you don’t have a 32-bit interpreter installed, you can install standard
python interpreters from the Add Environment dialog. Select the Add
Environment command in the Python Environments window or the
Python toolbar, select the Python installation tab, indicate which inter-
preters to install, and select Install.



A.2. Create a Python Project 65

If you already added an environment other than the global default
to a project, you may need to activate a newly added environment.
Right-click that environment under the Python Environments node
and select Activate Environment. To remove an environment from the
project, select Remove.



66 Appendix A. pybind11: A step-by-step tutorial with examples

A.3 Create a C++ Project

1. A Visual Studio solution can contain both Python and C++ projects to-
gether. To do so, right-click the solution in Solution Explorer and select
Add > New Project.

2. Search on "C++", select Empty project, specify the name "test", and se-
lect OK.

3. Create a C++ file in the new project by right-clicking the Source Files
node, then select Add > New Item, select C++ File, name it main.cpp,
and select OK.

4. Right-click the C++ project in Solution Explorer, select Properties.

5. At the top of the Property Pages dialog that appears, set Configuration
to All Configurations and Platform to Win32.



A.4. Convert the C++ project to extension for Python 67

6. Set the specific properties as described in the following table, then select
OK.

7. Right-click the C++ project and select Build to test your configurations
(both Debug and Release). The .pyd files are located in the solution
folder under Debug and Release, not the C++ project folder itself.

8. Add the following code to the C++ project’s main.cpp file:

1 #include <iostream >
2

3 int main(){
4 std::cout << "Hello World from C++" << std::

endl;
5

6 return 0;
7 }

9. Build the C++ project again to confirm the code is working.

A.4 Convert the C++ project to extension for Python

To make the C++ DLL into an extension for Python, first modify the exported
methods to interact with Python types. Then, add a function that exports the
module (main function).

1. Install pybind11 using pip:

1 pip install pybind11

or

1 py -m pip install pybind11

2. At the top of main.cpp, include pybind11.h:

1 #include <pybind11/pybind11.h>



68 Appendix A. pybind11: A step-by-step tutorial with examples

3. At the bottom of main.cpp, use the PYBIND11_MODULE macro to de-
fine the entry point to the C++ function:

1 namespace py = pybind11;
2

3 PYBIND11_MODULE(test , m) {
4 m.def("main_func", &main , R"pbdoc(
5 pybind11 simple example.
6 )pbdoc");
7

8 #ifdef VERSION_INFO
9 m.attr("__version__") = VERSION_INFO;

10 #else
11 m.attr("__version__") = "dev";
12 #endif
13 }

4. Set the target configuration to Release and build the C++ project to
verify your code.

The C++ module may fail to compile for the following reasons:

• Unable to locate Python.h (E1696: cannot open source file "Python.h"
and/or C1083: Cannot open include file: "Python.h": No such
file or directory): verify that the path in C/C++ > General > Addi-
tional Include Directories in the project properties points to your
Python installation’s include folder. See the table in Step 6.

• Unable to locate Python libraries: verify that the path in Linker >
General > Additional Library Directories in the project properties
points to the Python installation’s libs folder.See the table in Step
6.

• Linker errors related to target architecture: change the C++ tar-
get’s project architecture to match that of your Python installation.
For example, if you’re targeting x64 with the C++ project but your
Python installation is x86, change the C++ project to target x86.

A.5 Make the DLL available to Python

1. In Solution Explorer, right-click the References node in the Python
project, and then select Add Reference. In the dialog that appears, se-
lect the Projects tab, select the test project, and then select OK.



A.5. Make the DLL available to Python 69

2. Run the Visual Studio installer, select Modify, select Individual Com-
ponents > Compilers, build tools, and runtimes > Visual C++ 2015.3
v140 toolset. This step is necessary because Python (for Windows) is
itself built with Visual Studio 2015 (version 14.0) and expects that those
tools are available when building an extension through the method de-
scribed here. (Note that you may need to install a 32-bit version of
Python and target the DLL to Win32 and not x64.)



70 Appendix A. pybind11: A step-by-step tutorial with examples

3. Create a file named setup.py in the C++ project by right-clicking the
project and selecting Add > New Item. Then select C++ File (.cpp),
name the file setup.py, and select OK (naming the file with the .py ex-
tension makes Visual Studio recognize it as Python despite using the
C++ file template).

Then, paste the following code into the setup.py file:

1 import os, sys
2 from distutils.core import setup , Extension
3 from distutils import sysconfig
4

5 cpp_args = [’-std=c++11’, ’-stdlib=libc++’,
6 ’-mmacosx -version -min =10.7’]
7

8 sfc_module = Extension(
9 ’pybind11_test ’,

10 sources = [’main.cpp’],
11 # add pybind11 folder and Python include

folder
12 include_dirs =[r’pybind11/include ’,
13 r’C:\ Users\Owner\AppData\Local\Programs\Python

\Python37 -32\ include ’],
14 language=’c++’,
15 extra_compile_args = cpp_args ,
16 )
17

18 setup(
19 name = ’pybind11_test ’,
20 version = ’1.0’,
21 description = ’Simple pybind11 example ’,
22 license = ’MIT’,
23 ext_modules = [sfc_module],
24 )

4. The setup.py code instructs Python to build the extension using the
Visual Studio 2015 C++ toolset when used from the command line.

Open an elevated command prompt, navigate to the folder that con-
tains setup.py, and enter the following command:

1 python setup.py install

A.6 Call the DLL from Python

After DLL is made available to Python, we can now call the test.main_func()
from Python code.

1. Add the following lines in your .py file to call methods exported from
the DLL:



A.7. Example: Store C++ Eigen Matrix as NumPy Arrays 71

1 import test
2

3 if __name__ == "__main__":
4 test.main_func ()

2. Run the Python program (Debug > Start without Debugging). The
output should look like the following:

A.7 Example: Store C++ Eigen Matrix as NumPy
Arrays

This example requires the use of Eigen, a C++ template library. Due to its
popularity, pybind11 provides transparent conversion and limited mapping
support between Eigen and Scientific Python linear algebra data types.

1. If have not already, visit: http://eigen.tuxfamily.org/index.php?
title=Main_Page. Click on zip to download the zip file.

Once the download is complete, decompress the zip file in a suitable lo-
cation. Note down the file path containing the folders as shown below:

http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page


72 Appendix A. pybind11: A step-by-step tutorial with examples

2. In the Solution Explorer, right-click the C++ project, select Properties.
Navigate to the C/C++ > General tab, add the Eigen path to the Addi-
tional Library Directories Property, then select OK.

3. Right-click the C++ project and select Build to test your configurations
(both Debug and Release).

4. Replace the code in main.cpp file with the following code:

1 # include <iostream >
2

3 // pybind11
4 #include <pybind11/pybind11.h>
5 #include <pybind11/eigen.h>



A.7. Example: Store C++ Eigen Matrix as NumPy Arrays 73

6

7

8 // Eigen
9 #include <Eigen/Dense >

10

11 namespace py = pybind11;
12

13 Eigen:: Matrix3f example_mat(const int a,
14 const int b, const int c) {
15 Eigen:: Matrix3f mat;
16 mat << 5 * a, 1 * b, 2 * c,
17 2 * a, 4 * b, 2 * c,
18 1 * a, 3 * b, 3 * c;
19

20 return mat;
21 }
22

23 Eigen:: MatrixXd inv(Eigen :: MatrixXd xs) {
24 return xs.inverse ();
25 }
26

27 double det(Eigen :: MatrixXd xs) {
28 return xs.determinant ();
29 }
30

31 PYBIND11_MODULE(test , m) {
32 m.def("example_mat", &example_mat);
33 m.def("inv", &inv);
34 m.def("det", &det);
35

36 #ifdef VERSION_INFO
37 m.attr("__version__") = VERSION_INFO;
38 #else
39 m.attr("__version__") = "dev";
40 #endif
41 }
42

Note that Eigen arrays are automatically converted to numpy arrays
simply by including the pybind11/eigen.h header (see line 5 in 4). C++
function that has an Eigen return type can be directly use as a NumPy
data type in Python.
Build the C++ project to check the code working correctly.

5. Include Eigen library’s directory. Replace the code in setup.py with the
following code:

1 import os, sys
2 from distutils.core import setup , Extension



74 Appendix A. pybind11: A step-by-step tutorial with examples

3 from distutils import sysconfig
4

5 cpp_args = [’-std=c++11’, ’-stdlib=libc++’,
6 ’-mmacosx -version -min =10.7’]
7

8 sfc_module = Extension(
9 ’pybind11_test ’,

10 sources = [’main.cpp’],
11 # add pybind11 folder and Python include

folder
12 include_dirs = [r’pybind11/include ’,
13 r’C:\ Users\Owner\AppData\Local\Programs\

Python\Python37 -32\ include ’,
14 r’C:\ Users\Owner\source\repos\eigen -3.3.7\

eigen -3.3.7 ’],
15 language = ’c++’,
16 extra_compile_args = cpp_args ,
17 )
18

19 setup(
20 name = ’pybind11_test ’,
21 version = ’1.0’,
22 description = ’Simple pybind11 example ’,
23 license = ’MIT’,
24 ext_modules = [sfc_module],
25 )

As before, in an elevated command prompt, navigate to the folder that
contains setup.py, and enter the following command:

1 python setup.py install

6. Then, paste the following code in the Python file:

1 import test
2 import numpy as np
3

4 if __name__ == "__main__":
5 A = test.example_mat (1,3,1)
6 print("Matrix A is: \n" , A)
7 print("The determinant of A is: \n", test.

inv(A))
8 print("The inverse of A is: ", test.det(A)

)



A.8. Example: Store Data Generated by Analytical Heston Model as
NumPy Arrays 75

The output should be:

A.8 Example: Store Data Generated by Analytical
Heston Model as NumPy Arrays

Only relevant part of the code will be displayed here. To request the code for
the entire project, contact the author at cko22@bath.edu.

This example demonstrates how to use pybind11 for:

• C++ project with multiple files

• Store C++ Eigen Matrix as NumPy arrays

1. For multiple files C++ project, we need to include the source files in
setup.py. This example also uses the Eigen library and so its directory
will also be included. Paste the following code in setup.py:

1 import os, sys
2 from distutils.core import setup , Extension
3 from distutils import sysconfig
4

5 cpp_args = [’-std=c++11’, ’-stdlib=libc++’, ’-
mmacosx -version -min =10.7’]

6

7 sfc_module = Extension(
8 ’Data_Generation ’,

mailto:cko22@bath.edu


76 Appendix A. pybind11: A step-by-step tutorial with examples

9 sources = [r’module.cpp’, r’Data.cpp’, r’
Heston.cpp’, r’IntegrationScheme.cpp’, r’
IntegratorImp.cpp’, r’NumIntegrator.cpp’, r’
pdetfunction.cpp’, r’pfunction.cpp’, r’Range.
cpp’],

10 include_dirs =[r’pybind11/include ’, r’C:\
Users\Owner\AppData\Local\Programs\Python\
Python37 -32\ include ’, r’C:\Users\Owner\source\
repos\eigen -3.3.7\ eigen -3.3.7 ’],

11 language=’c++’,
12 extra_compile_args = cpp_args ,
13 )
14

15 setup(
16 name = ’Data_Generation ’,
17 version = ’1.0’,
18 description = ’Python package with

Data_Generation C++ extension (PyBind11)’,
19 license = ’MIT’,
20 ext_modules = [sfc_module],
21 )

Then, go to the folder that contains setup.py in command prompt, enter
the following command:

1 python setup.py install

2. The code in module.cpp is:

1 //For analytic solution in case of Heston
model

2 #include "Heston.hpp"
3 #include <ctime >
4 #include "Data.hpp"
5 #include <future >
6

7

8 // Inputting and Outputting
9 #include <iostream >

10 #include <vector >
11

12 // pybind11
13 #include <pybind11/pybind11.h>
14 #include <pybind11/eigen.h>
15 #include <pybind11/stl_bind.h>
16

17 // Eigen
18 //#include <C:\Users\Owner\source\repos\eigen

-3.3.7\ eigen -3.3.7\ Eigen/Dense >



A.8. Example: Store Data Generated by Analytical Heston Model as
NumPy Arrays 77

19 #include <Eigen/Dense >
20

21 namespace py = pybind11;
22

23 struct CPPData {
24 // Input Data
25 std::vector <double > spot_price;
26 std::vector <double > strike_price;
27 std::vector <double > risk_free_rate;
28 std::vector <double > dividend_yield;
29 std::vector <double > initial_vol;
30 std::vector <double > maturity_time;
31 std::vector <double > long_term_vol;
32 std::vector <double > mean_reversion_rate;
33 std::vector <double > vol_vol;
34 std::vector <double > price_vol_corr;
35

36 // Output Data
37 std::vector <double > option_price;
38 };
39

40

41 /*
42 ....do something ....
43 */
44

45 Eigen:: MatrixXd module () {
46 CPPData cppdata;
47 simulation(cppdata);
48

49 // Convert vector to eigen vector first
50 // Input Data
51 Map <Eigen ::VectorXd > eigen_spot_price(

cppdata.spot_price.data(), cppdata.spot_price.
size());

52 Map <Eigen ::VectorXd > eigen_strike_price(
cppdata.strike_price.data(), cppdata.
strike_price.size());

53 Map <Eigen ::VectorXd > eigen_risk_free_rate(
cppdata.risk_free_rate.data(), cppdata.
risk_free_rate.size());

54 Map <Eigen ::VectorXd > eigen_dividend_yield(
cppdata.dividend_yield.data(), cppdata.
dividend_yield.size());

55 Map <Eigen ::VectorXd > eigen_initial_vol(
cppdata.initial_vol.data(), cppdata.initial_vol
.size());



78 Appendix A. pybind11: A step-by-step tutorial with examples

56 Map <Eigen ::VectorXd > eigen_maturity_time(
cppdata.maturity_time.data(), cppdata.
maturity_time.size());

57 Map <Eigen ::VectorXd > eigen_long_term_vol(
cppdata.long_term_vol.data(), cppdata.
long_term_vol.size());

58 Map <Eigen ::VectorXd >
eigen_mean_reversion_rate(cppdata.
mean_reversion_rate.data(), cppdata.
mean_reversion_rate.size());

59 Map <Eigen ::VectorXd > eigen_vol_vol(cppdata
.vol_vol.data(), cppdata.vol_vol.size());

60 Map <Eigen ::VectorXd > eigen_price_vol_corr(
cppdata.price_vol_corr.data(), cppdata.
price_vol_corr.size());

61 // Output Data
62 Map <Eigen ::VectorXd > eigen_option_price(

cppdata.option_price.data(), cppdata.
option_price.size());

63

64 const int cols {11}; // No. of columns
65 const int rows = SIZE * 4;
66 // Define a matrix that store training

data to be used in Python
67 MatrixXd training(rows , cols);
68 // Initialise each column using vectors
69 training.col(0) = eigen_spot_price;
70 training.col(1) = eigen_strike_price;
71 training.col(2) = eigen_risk_free_rate;
72 training.col(3) = eigen_dividend_yield;
73 training.col(4) = eigen_initial_vol;
74 training.col(5) = eigen_maturity_time;
75 training.col(6) = eigen_long_term_vol;
76 training.col(7) =

eigen_mean_reversion_rate;
77 training.col(8) = eigen_vol_vol;
78 training.col(9) = eigen_price_vol_corr;
79 training.col (10) = eigen_option_price;
80

81 // std::cout << training << std::endl;
82

83 return training;
84 };
85

86 PYBIND11_MODULE(Data_Generation , m) {
87

88 m.def("module", &module);



A.8. Example: Store Data Generated by Analytical Heston Model as
NumPy Arrays 79

89

90 #ifdef VERSION_INFO
91 m.attr("__version__") = VERSION_INFO;
92 #else
93 m.attr("__version__") = "dev";
94 #endif
95 }

Note that the module function return type is Eigen. This can then be
used directly as NumPy data type in Python.

3. The C++ function can then be called from Python as shown:

1 import Data_Generation as dg
2 import mysql.connector
3 import pandas as pd
4 import sqlalchemy as db
5 import time
6

7 ### This function calls analytical Heston
option pricer in C++ to simulation 5,000,000
option prices and store them in MySQL database

8

9 """
10 ....do something ....
11

12 """
13

14 if __name__ == "__main__":
15 t0 = time.time()
16

17 # A new table (optional)
18 #SQL_clean_table ()
19

20 target_size = 5000000 # Final table size
21 batch_size = 500000 # Size generated each

iteration
22

23 # Get the number of rows existed in the
table

24 r = SQL_setup(batch_size);
25

26 # Get the number of iterations
27 iter = int(target_size/batch_size) - int(r

/batch_size)
28 print("Iteration(s) required: ", iter)
29 count =0
30

31 print("Now Run C++ code: ")



80 Appendix A. pybind11: A step-by-step tutorial with examples

32 for i in range(iter):
33 count = count +1
34 print("

----------------------------------------------------
")

35 print("Current iteration: ", count)
36 cpp = dg.module () # store data from C

++
37

38 """
39 ....do something ....
40

41 """
42

43 r1=SQL_setup(batch_size)
44 print("No. of rows in SQL Classic Heston

Table Now: ", r1)
45 print("\n")
46 t1 = time.time()
47 # Calculate total time for entire program
48 total = t1 - t0
49 print("THE ENTIRE PROGRAM TAKES: ", round(

total), " s TO COMPLETE")
50



81

Appendix B

Asymptotic Expansions for General
Stochastic Volatility Models

B.1 Asymptotic Expansions

We present the asymptotic expansions for general Stochastic Volatility Mod-
els by (Lorig et al., 2019). Consider a strictly positive spot price S whose
risk-neutral dynamics are given by

S = eX (B.1)

dX = −1
2

σ2(t, X, Y)dt + σ(t, X, Y)dW1, X(0) = x ∈ R (B.2)

dY = f (t, X, Y)dt + β(t, X, Y)dW2, Y(0) = y ∈ R (B.3)
〈dW1, dW2〉 = ρ(t, X, Y)dt, |ρ| < 1. (B.4)

The drift of X is selected to be −1
2 σ2 so that S = eX is martingale.

Let C(t) be the time t value of a European call option, matures at time T
> t with payoff function P(X(T)). To value a European-style option using
risk-neutrla pricing we must compute functions of the form

u(t, x, y) := E[P(X(T))|X(t) = x, Y(t) = y]

It is well-known that the function u satisfised the Kolmogorov Backward
equation (Lorig et al., 2019)

(∂t +A(t))u(t, x, y) = 0, u(T, x, y) = P(x) (B.5)

where the operator A(t) is given explicitly by

A(t) = a(t, x, y)(∂2
x − ∂x) + f (t, x, y)∂y + b(t, x, y)∂2

y + c(t, x, y)∂x∂y (B.6)

and where the functions a, b and c are defined as

a(t, x, y) :=
1
2

σ2(t, x, y)

b(t, x, y) :=
1
2

β2(t, x, y)

c(t, x, y) := ρ(t, x, y)σ(t, x, y)β(t, x, y)





83

Appendix C

Deep Neural Networks Library in
Python: Keras

We show the code snippet for computing ANN in Keras. The Python code for
defining ANN architecture for rough Heston implied volatility, approxima-
tion

1 #%% Define the neural network architecture
2 import keras
3 from keras import backend as K
4 keras.backend.set_floatx(’float64 ’)
5 from keras.callbacks import EarlyStopping
6

7 # Construct the model
8 input_layer = keras.layers.Input(shape =(n,))
9

10 hidden_layer1 = keras.layers.Dense(80, activation=’elu
’)(input_layer)

11 hidden_layer2 = keras.layers.Dense(80, activation=’elu
’)(hidden_layer1)

12 hidden_layer3 = keras.layers.Dense(80, activation=’elu
’)(hidden_layer2)

13

14 output_layer = keras.layers.Dense (100, activation=’
linear ’)(hidden_layer3)

15

16 model = keras.models.Model(inputs=input_layer , outputs
=output_layer)

17

18 # summarize layers
19 model.summary ()
20

21 # User -defined metrics: R2 and Max Abs Error
22 # R2
23 def coeff_determination(y_true , y_pred):
24 SS_res = K.sum(K.square( y_true -y_pred ))
25 SS_tot = K.sum(K.square( y_true - K.mean(y_true) )

)



84 Appendix C. Deep Neural Networks Library in Python: Keras

26 return (1 - SS_res /( SS_tot + K.epsilon ()))
27 #Max Error
28 def max_error(y_true ,y_pred):
29 return (K.max(abs(y_true -y_pred)))
30

31 earlystop = EarlyStopping(monitor="val_loss",
32 min_delta=0,
33 mode="min",
34 verbose=1,
35 patience= 25)
36

37 # Prepares model for training
38 #opt = keras.optimizers.Adam(learning_rate =0.005)
39 model.compile(loss=’mse’, optimizer=’adam’, metrics =[’

mae’, coeff_determination , max_error ])



85

Bibliography

Alos, Elisa et al. (June 2017). “Exponentiation of Conditional Expectations
Under Stochastic Volatility”. In: URL: https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2983180.

Andersen, Leif et al. (Jan. 2007). “Moment Explosions in Stochastic Volatility
Models”. In: Finance and Stochastics 11, pp. 29–50. DOI: 10.1007/s00780-
006-0011-7.

Atkinson, Colin et al. (Jan. 2011). “Rational Solutions for the Time-Fractional
Diffusion Equation”. In: URL: https://www.researchgate.net/publication/
220222966_Rational_Solutions_for_the_Time-Fractional_Diffusion_
Equation.

Bayer, Christian et al. (Oct. 2018). “Deep calibration of rough stochastic volatil-
ity models”. In: URL: https://arxiv.org/abs/1810.03399.

Black, Fischer et al. (May 1973). “The Pricing of Options and Corporate Lia-
bilities”. In: URL: https://www.cs.princeton.edu/courses/archive/
fall09/cos323/papers/black_scholes73.pdf.

Carr, Peter and Dilip B. Madan (Mar. 1999). “Option valuation using the
fast Fourier transform”. In: Journal of Computational Finance. URL: https:
//www.researchgate.net/publication/2519144_Option_Valuation_
Using_the_Fast_Fourier_Transform.

Chapter 2 Modeling Process: k-fold cross validation. https://bradleyboehmke.
github.io/HOML/process.html. Accessed: 2020-08-22.

Comte, Fabienne et al. (Oct. 1998). “Long Memory In Continuous-Time Stochas-
tic Volatility Models”. In: Mathematical Finance 8, pp. 291–323. URL: https:
//zulfahmed.files.wordpress.com/2015/10/comterenault19981.pdf.

Cox, JOHN C. et al. (Jan. 1985). “A THEORY OF THE TERM STRUCTURE OF
INTEREST RATES”. In: URL: http://pages.stern.nyu.edu/~dbackus/
BCZ/discrete_time/CIR_Econometrica_85.pdf.

Create a C++ extension for Python. https://docs.microsoft.com/en- us/
visualstudio / python / working - with - c - cpp - python - in - visual -
studio?view=vs-2019. Accessed: 2020-07-21.

Duffy, Daniel J. (Jan. 2018). Financial Instrument Pricing Using C++, Second
Edition. John Wiley Sons. ISBN: 978-0-470-97119-2.

Duffy, Daniel J. et al. (2012). Monte Carlo Frameworks: Building customisable
high-performance C++ applications. John Wiley Sons, Inc. ISBN: 9780470060698.

Dupire, Bruno (1994). “Pricing with a Smile”. In: Risk Magazine, pp. 18–20.
Eigen: The Matrix Class. https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.

html. Accessed: 2020-07-22.
Eldan, Ronen et al. (May 2016). “The Power of Depth for Feedforward Neural

Networks”. In: URL: https://arxiv.org/abs/1512.03965.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2983180
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2983180
https://doi.org/10.1007/s00780-006-0011-7
https://doi.org/10.1007/s00780-006-0011-7
https://www.researchgate.net/publication/220222966_Rational_Solutions_for_the_Time-Fractional_Diffusion_Equation
https://www.researchgate.net/publication/220222966_Rational_Solutions_for_the_Time-Fractional_Diffusion_Equation
https://www.researchgate.net/publication/220222966_Rational_Solutions_for_the_Time-Fractional_Diffusion_Equation
https://arxiv.org/abs/1810.03399
https://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.pdf
https://www.cs.princeton.edu/courses/archive/fall09/cos323/papers/black_scholes73.pdf
https://www.researchgate.net/publication/2519144_Option_Valuation_Using_the_Fast_Fourier_Transform
https://www.researchgate.net/publication/2519144_Option_Valuation_Using_the_Fast_Fourier_Transform
https://www.researchgate.net/publication/2519144_Option_Valuation_Using_the_Fast_Fourier_Transform
https://bradleyboehmke.github.io/HOML/process.html
https://bradleyboehmke.github.io/HOML/process.html
https://zulfahmed.files.wordpress.com/2015/10/comterenault19981.pdf
https://zulfahmed.files.wordpress.com/2015/10/comterenault19981.pdf
http://pages.stern.nyu.edu/~dbackus/BCZ/discrete_time/CIR_Econometrica_85.pdf
http://pages.stern.nyu.edu/~dbackus/BCZ/discrete_time/CIR_Econometrica_85.pdf
https://docs.microsoft.com/en-us/visualstudio/python/working-with-c-cpp-python-in-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/python/working-with-c-cpp-python-in-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/python/working-with-c-cpp-python-in-visual-studio?view=vs-2019
https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html
https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html
https://arxiv.org/abs/1512.03965


86 Bibliography

Euch, Omar El et al. (Sept. 2016). “The characteristic function of rough Heston
models”. In: URL: https://arxiv.org/pdf/1609.02108.pdf.

— (Mar. 2019). “Roughening Heston”. In: URL: https://ssrn.com/abstract=
3116887.

Fouque, Jean-Pierre et al. (Aug. 2012). “Second Order Multiscale Stochastic
Volatility Asymptotics: Stochastic Terminal Layer Analysis Calibration”.
In: URL: https://arxiv.org/abs/1208.5802.

Gatheral, Jim (2006). The volatility surface : a practitioner’s guide. John Wiley
Sons, Inc. ISBN: 978-0-471-79251-2.

Gatheral, Jim et al. (Oct. 2014). “Volatility is rough”. In: URL: https://arxiv.
org/abs/1410.3394.

— (Jan. 2019). “Rational approximation of the rough Heston solution”. In:
URL: https : / / papers . ssrn . com / sol3 / papers . cfm ? abstract _ id =
3191578.

Hebb, Donald O. (1949). The Organization of Behavior: A Neuropsychological
Theory. Psychology Press; 1 edition (12 Jun. 2002). ISBN: 978-0805843002.

Heston, Steven (Jan. 1993). “A Closed-Form Solution for Options with Stochas-
tic Volatility with Applications to Bond and Currency Options”. In: URL:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.
3204&rep=rep1&type=pdf.

Hinton, Geoffrey et al. (Feb. 2015). “Overview of mini-batch gradient de-
scent”. In: URL: https://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf.

Hornik et al. (Mar. 1989). “Multilayer feedforward networks are universal
approximators”. In: URL: https : / / deeplearning . cs . cmu . edu / F20 /
document/readings/Hornik_Stinchcombe_White.pdf.

— (Jan. 1990). “Universal approximation of an unknown mapping and its
derivatives using multilayer feedforward networks”. In: URL: http://
www.inf.ufrgs.br/~engel/data/media/file/cmp121/univ_approx.pdf.

Horvath, Blanka et al. (Jan. 2019). “Deep Learning Volatility”. In: URL: https:
//ssrn.com/abstract=3322085.

Hurst, Harold E. (Jan. 1951). “Long-term storage of reservoirs: an experimen-
tal study”. In: URL: https://www.jstor.org/stable/2982267#metadata_
info_tab_contents.

Hutchinson, James M. et al. (July 1994). “A Nonparametric Approach to Pric-
ing and Hedging Derivative Securities Via Learning Networks”. In: URL:
https://alo.mit.edu/wp-content/uploads/2015/06/A-Nonparametric-
Approach- to- Pricing- and- Hedging- Derivative- Securities- via-
Learning-Networks.pdf.

Ioffe, Sergey et al. (Feb. 2015). “UBatch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: URL: https:
//arxiv.org/abs/1502.03167.

Itkin, Andrey (Jan. 2010). “Pricing options with VG model using FFT”. In:
URL: https://arxiv.org/abs/physics/0503137.

Kahl, Christian et al. (Jan. 2006). “Not-so-complex Logarithms in the Hes-
ton model”. In: URL: http://www2.math.uni- wuppertal.de/~kahl/
publications/NotSoComplexLogarithmsInTheHestonModel.pdf.

https://arxiv.org/pdf/1609.02108.pdf
https://ssrn.com/abstract=3116887
https://ssrn.com/abstract=3116887
https://arxiv.org/abs/1208.5802
https://arxiv.org/abs/1410.3394
https://arxiv.org/abs/1410.3394
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3191578
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3191578
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.3204&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.3204&rep=rep1&type=pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://deeplearning.cs.cmu.edu/F20/document/readings/Hornik_Stinchcombe_White.pdf
https://deeplearning.cs.cmu.edu/F20/document/readings/Hornik_Stinchcombe_White.pdf
http://www.inf.ufrgs.br/~engel/data/media/file/cmp121/univ_approx.pdf
http://www.inf.ufrgs.br/~engel/data/media/file/cmp121/univ_approx.pdf
https://ssrn.com/abstract=3322085
https://ssrn.com/abstract=3322085
https://www.jstor.org/stable/2982267#metadata_info_tab_contents
https://www.jstor.org/stable/2982267#metadata_info_tab_contents
https://alo.mit.edu/wp-content/uploads/2015/06/A-Nonparametric-Approach-to-Pricing-and-Hedging-Derivative-Securities-via-Learning-Networks.pdf
https://alo.mit.edu/wp-content/uploads/2015/06/A-Nonparametric-Approach-to-Pricing-and-Hedging-Derivative-Securities-via-Learning-Networks.pdf
https://alo.mit.edu/wp-content/uploads/2015/06/A-Nonparametric-Approach-to-Pricing-and-Hedging-Derivative-Securities-via-Learning-Networks.pdf
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/physics/0503137
http://www2.math.uni-wuppertal.de/~kahl/publications/NotSoComplexLogarithmsInTheHestonModel.pdf
http://www2.math.uni-wuppertal.de/~kahl/publications/NotSoComplexLogarithmsInTheHestonModel.pdf


Bibliography 87

Kingma, Diederik P. et al. (Feb. 2015). “Adam: A Method for Stochastic Opti-
mization”. In: URL: https://arxiv.org/abs/1412.6980.

Kwok, YueKuen et al. (2012). Handbook of Computational Finance, Chapter 21.
Springer-Verlag Berlin Heidelberg. ISBN: 978-3-642-17254-0.

Lewis, Alan (Sept. 2001). “A Simple Option Formula for General Jump-Diffusion
and Other Exponential Levy Processes”. In: URL: https://papers.ssrn.
com/sol3/papers.cfm?abstract_id=282110.

Liu, Shuaiqiang et al. (Apr. 2019a). “A neural network-based framework for
financial model calibration”. In: URL: https://arxiv.org/abs/1904.
10523.

— (Apr. 2019b). “Pricing options and computing implied volatilities using
neural networks”. In: URL: https://arxiv.org/abs/1901.08943.

Lorig, Matthew et al. (Jan. 2019). “Explicit implied vols for multifactor local-
stochastic vol models”. In: URL: https://arxiv.org/abs/1306.5447v3.

Mandara, Dalvir (Sept. 2019). “Artificial Neural Networks for Black-Scholes
Option Pricing and Prediction of Implied Volatility for the SABR Stochas-
tic Volatility Model”. In: URL: https://www.datasim.nl/application/
files/8115/7045/4929/1423101.pdf.

McCulloch, Warren et al. (May 1943). “A Logical Calculus of The Ideas Im-
manent in Nervous Activity”. In: URL: http://www.cse.chalmers.se/
~coquand/AUTOMATA/mcp.pdf.

Mostafa, F. et al. (May 2008). “A neural network approach to option pricing”.
In: URL: https://www.witpress.com/elibrary/wit-transactions-on-
information-and-communication-technologies/41/18904.

Peters, Edgar E. (Jan. 1991). Chaos and Order in the Capital Markets: A New
View of Cycles, Prices, and Market Volatility. John Wiley Sons. ISBN: 978-0-
471-13938-6.

— (Jan. 1994). Fractal Market Analysis: Applying Chaos Theory to Investment and
Economics. John Wiley Sons. ISBN: 978-0-471-58524-4. URL: https://www.
amazon.co.uk/Fractal-Market-Analysis-Investment-Economics/dp/
0471585246.

pybind11 Documentation. https://pybind11.readthedocs.io/en/stable/
advanced/cast/eigen.html. Accessed: 2020-07-22.

Ruf, Johannes et al. (May 2020). “Neural networks for option pricing and
hedging: a literature review”. In: URL: https://arxiv.org/abs/1911.
05620.

Schmelzle, Martin (Apr. 2010). “Option Pricing Formulae using Fourier Trans-
form: Theory and Application”. In: URL: https://pfadintegral.com/
docs/Schmelzle2010%20Fourier%20Pricing.pdf.

Shevchenko, Georgiy (Jan. 2015). “Fractional Brownian motion in a nutshell”.
In: International Journal of Modern Physics: Conference Series 36. URL: https:
//www.worldscientific.com/doi/abs/10.1142/S2010194515600022.

Stone, Henry (July 2019). “Calibrating Rough Volatility Models: A Convolu-
tional Neural Network Approach”. In: URL: https://arxiv.org/abs/
1812.05315.

Using the C++ eigen library to calculate matrix inverse and determinant. http:
//people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.

https://arxiv.org/abs/1412.6980
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=282110
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=282110
https://arxiv.org/abs/1904.10523
https://arxiv.org/abs/1904.10523
https://arxiv.org/abs/1901.08943
https://arxiv.org/abs/1306.5447v3
https://www.datasim.nl/application/files/8115/7045/4929/1423101.pdf
https://www.datasim.nl/application/files/8115/7045/4929/1423101.pdf
http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
https://www.witpress.com/elibrary/wit-transactions-on-information-and-communication-technologies/41/18904
https://www.witpress.com/elibrary/wit-transactions-on-information-and-communication-technologies/41/18904
https://www.amazon.co.uk/Fractal-Market-Analysis-Investment-Economics/dp/0471585246
https://www.amazon.co.uk/Fractal-Market-Analysis-Investment-Economics/dp/0471585246
https://www.amazon.co.uk/Fractal-Market-Analysis-Investment-Economics/dp/0471585246
https://pybind11.readthedocs.io/en/stable/advanced/cast/eigen.html
https://pybind11.readthedocs.io/en/stable/advanced/cast/eigen.html
https://arxiv.org/abs/1911.05620
https://arxiv.org/abs/1911.05620
https://pfadintegral.com/docs/Schmelzle2010%20Fourier%20Pricing.pdf
https://pfadintegral.com/docs/Schmelzle2010%20Fourier%20Pricing.pdf
https://www.worldscientific.com/doi/abs/10.1142/S2010194515600022
https://www.worldscientific.com/doi/abs/10.1142/S2010194515600022
https://arxiv.org/abs/1812.05315
https://arxiv.org/abs/1812.05315
http://people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.html##Using-the-C++-eigen-library-to-calculate-matrix-inverse-and-determinant
http://people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.html##Using-the-C++-eigen-library-to-calculate-matrix-inverse-and-determinant
http://people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.html##Using-the-C++-eigen-library-to-calculate-matrix-inverse-and-determinant


88 Bibliography

html#Using-the-C++-eigen-library-to-calculate-matrix-inverse-
and-determinant. Accessed: 2020-07-22.

Wilmott, Paul (2006). Paul Wilmott on Quantitative Finance, Vol 3. John Wiley
Sons, Inc.; 2nd Edition. ISBN: 978-0-470-01870-5.

http://people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.html##Using-the-C++-eigen-library-to-calculate-matrix-inverse-and-determinant
http://people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.html##Using-the-C++-eigen-library-to-calculate-matrix-inverse-and-determinant
http://people.duke.edu/~ccc14/sta-663-2016/18G_C++_Python_pybind11.html##Using-the-C++-eigen-library-to-calculate-matrix-inverse-and-determinant

	Declaration of Authorship
	Abstract
	Acknowledgements
	Project's Overview
	Project's Overview

	Introduction
	Organisation of This Thesis

	Literature Review
	Application of ANN in Finance
	Option Pricing Models
	The Research Gap

	Option Pricing Models
	The Heston Model
	Option Pricing Under Heston Model
	Heston Model Implied Volatility Approximation

	Volatility is Rough
	The Rough Heston Model
	Rough Heston Pricing Equation
	Rational Approximation of Rough Heston Riccati Solution
	Option Pricing Using Fast Fourier Transform

	Rough Heston Model Implied Volatility


	Artificial Neural Networks
	Dissecting the Artificial Neural Networks
	Neurons
	Input, Output and Hidden Layers
	Connections, Weights and Biases
	Forward and Backward Propagation, Loss Functions
	Activation Functions
	Optimisation Algorithms and Learning Rate
	Epochs, Early Stopping and Batch Size

	Feedforward Neural Networks
	Deep Neural Networks

	Common Pitfalls and Remedies
	Loss Function Stagnation
	Loss Function Fluctuation
	Over-fitting
	Under-fitting

	Application in Finance: ANN Image-based Implicit Method for Implied Volatility Approximation

	Data
	Data Generation and Storage
	Heston Call Option Data
	Heston Implied Volatility Data
	Rough Heston Call Option Data
	Rough Heston Implied Volatility Data

	Data Pre-processing
	Data Splitting: Train - Validate - Test
	Data Standardisation and Normalisation
	Data Partitioning


	Neural Networks Architecture and Experimental Setup
	Neural Networks Architecture
	ANN Architecture: Option Pricing under Heston Model
	ANN Architecture: Implied Volatility Surface of Heston Model
	ANN Architecture: Option Pricing under Rough Heston Model
	ANN Architecture: Implied Volatility Surface of Rough Heston Model

	Performance Metrics and Validation Methods
	Implementation of ANN in Keras
	Summary of Neural Networks Architecture

	Results and Discussions
	Heston Option Pricing ANN Results
	Heston Implied Volatility ANN Results
	Rough Heston Option Pricing ANN Results
	Rough Heston Implied Volatility ANN Results
	Run-time Performance

	Conclusions and Outlook
	pybind11: A step-by-step tutorial with examples
	Software Prerequisites
	Create a Python Project
	Create a C++ Project
	Convert the C++ project to extension for Python
	Make the DLL available to Python
	Call the DLL from Python
	Example: Store C++ Eigen Matrix as NumPy Arrays
	Example: Store Data Generated by Analytical Heston Model as NumPy Arrays

	Asymptotic Expansions for General Stochastic Volatility Models
	Asymptotic Expansions

	Deep Neural Networks Library in Python: Keras
	Bibliography



