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Summary of Contents 

The course consists of eight modules. Each module deals with a single major area and it uses the results 

from its predecessor module. Its output is then needed by its successor module. In this way we reduce 

the amount of coupling and thus help flatten the learning curve. 

 

Part A Mathematical Foundations and Background 

Introduces the mathematical and numerical analysis concepts that are needed in order to understand 

the finite difference method and its application to computational finance, in particular continuous and 

discrete mathematics fundamentals. The presented material can also be used as a standalone reference.  

 

Continuous Functions 

• Intuitive concept of continuity  

• Precise definition of limit of a function  

• Basic limit theorems  

• Squeezing principle  

 

Special Kinds of Functions  

• Piecewise continuous functions 

• Discontinuous functions 

• Monotonic functions 

• Convex and concave functions 

 

 

Differential Calculus 

• Motivation: velocity of a projectile  

• Definition of derivative  

• Examples  

• The algebra of derivatives 

 

Advanced Differentiation 

• The derivative as a slope  

• Chain rule of differentiation for composite 

functions  

• Implicit differentiation  

• Numerical differentiation 

 

Part B Finite Difference Method  for Ordinary Differential Equations (ODEs) 

This module discusses ODEs from three main perspectives; first, we introduce first order ODEs and we 

discuss their qualitative properties such as existence and uniqueness of linear and nonlinear scalar ODEs 

and ODE systems. Second, we introduce the Finite Difference Method by applying it to ODEs. Finally, we 

discuss the advantages of this approach in the context of this course, for example: 

• Building a common mathematical and numerical notation and terminology that permeates all aspects 

of the course. 

• Introducing specific finite difference schemes (by their name) and using them to approximate ODEs. 

The very same schemes will be extended and applied to PDEs and SDEs in later modules. 

• Gaining insights into FDM by examining concrete examples in detail (hands-on approach) before 

moving to larger problems. 
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Ordinary Differential Equations: Theory 

Overview  

• What is an ordinary differential equation (ODE)?  

• First-order, second-order and nth-order ODEs  

• Linear and nonlinear ODEs  

• ODEs with analytical solutions: integrating factor  

• The Euler method for nonlinear ODEs  

 

Motivational Examples  

• Bernoulli and Riccati equations  

• ODEs in mathematical biology  

• Radioactive decay 

• Predator-prey models  

• Interest-rate modelling  

 

Existence Theory 

•  Sufficient conditions for existence and 

uniqueness in an interval  

• Lipschitz continuity  

• The Picard method of successive approximations 

• The Gronwall inequality 

 

Ordinary Differential Equations: Numerics 

Theoretical Foundations 

• Single-step and multi-step methods 

• Explicit and implicit schemes 

• Stability and accuracy 

• Discrete maximum principle 

 

Popular Schemes 

• Explicit and implicit Euler methods 

• Crank-Nicolson method 

• Predictor-Corrector methods 

• Methods for systems of ODEs 

• Examples 

 

Advanced Topics 

• Exponential Fitting 

• Extrapolation and improving accuracy 

• Matrix differential equations 

• Stiff ODEs 

 

Part C Foundations of the Finite Difference Method 

We introduce the mathematical background to the finite difference method for initial boundary value 

problems for parabolic partial differential equations.  This module encapsulates in one place all the 

background information that is needed to construct stable and accurate finite difference schemes for 

time-dependent problems. The schemes will be applied to one-factor and two-factor finance PDEs in 

later chapters. The advantage is that the sections discuss finite difference schemes for generic PDEs 

which will then be applied to finance PDEs in finance. 

 

Theoretical Underpinnings 

• Fourier analysis of PDEs 

• Fourier transform and inverse Fourier transform 

• Fourier Transform for the advection and diffusion 

equations 

 

Discrete Fourier Transform (DFT) 

• Finite and infinite dimensional sequences 

• Using DFT for finite difference schemes 

• von Neumann stability (amplification 

factor/symbol) 

• Test Case A-Z: the advection (convection) 

equation 

 

 

Convergence Analysis 

• Consistency and stability 

• Unconditional and conditional stability 

• First-order and second-order accuracy 

• Test Case: one-dimensional heat equation 

 

Boundary Value Problems: Continuous Case 

• Time-independent convection-diffusion 

equations 

• Conservative and non-conservative equation 

forms 

• Boundary conditions: Dirichlet, Neumann, Robin 

• Existence and uniqueness results 
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Boundary Value Problems: Discrete Approximation 

• Approximating derivatives by divided differences 

• Approximating boundary conditions 

• Accuracy and stability requirements 

• Assembling the discrete matrix system 

Numerical Linear Algebra 

• Types of matrices (e.g. M-matrices) 

• Solving matrix systems by direct methods 

• LU decomposition 

• Thomas algorithm for tridiagonal systems 

 

Part D Finite Difference Method for One-Factor PDEs 

This module introduces time-dependent partial differential equations in one space variable and their 

numerical approximation by a variety of finite difference schemes. In general, we can view a pde as a 

composition of a first-order ODE in time and a second-order ODE in space. In order to have a unique 

solution we must prescribe an initial condition and auxiliary boundary conditions. 

 

Summarising, this module discusses how to specify initial boundary value problems for time-dependent 

PDEs and how to approximate them by popular finite difference schemes. We note that the schemes we 

use for one-factor problems will be used and generalised to two-factor problems as we shall in Part G. 

 

PDE Preprocessing 

• Domain truncation and domain transformation 

• Change of variables 

• PDEs in conservative and non-conservative form 

• The Fichera theory for boundary conditions 

 

Discretisation Strategies 

• Semi-discretisation and Method of Lines (MOL) 

• Simultaneous (full) discretisation in time and 

space 

• Explicit and implicit methods 

• First-order and second-order accuracy 

 

Some popular Schemes 

• Fully implicit and Crank-Nicolson 

• Alternating Direction Explicit (ADE) 

• Upwinding and exponential fitting for 

convection-dominated problems 

• Schemes for PDEs in conservative form 

 

 

 

 

 

 

Part E Stochastic Differential Equations (SDEs) 

In general terms, an sde has more or less the same form as an ode but with a random term added on. 

SDEs are important equations when we model random processes in finance, fluid dynamics and 

simulation.  It is important to gain an understanding of SDEs because together with ODEs and PDEs they 

are the foundation for numerical simulation in many application areas. 

 

The main topics are: 

• An introduction to stochastic differential equations (SDEs) and their numerical approximation. 

• Some popular finite difference schemes for SDEs and applications to Geometric Brownian Motion 

(GBM). 

• Option pricing using Monte Carlo simulation and C++ code for one-factor SDE. 

• Fundamental results and theorems; Feyman-Kac formula, Kolmogorov backward and forward 

(Fokker-Planck) equations and their applications. 
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Stochastics Background 

• Stochastic Differential Equations (SDE) 

• The Ito formula 

• The equivalence between SDEs and PDEs 

• Where are SDEs used? 

 

Numerical Approximations of SDEs 

• Euler-Maruyama 

• Milstein 

• Predictor-Corrector 

• Drift-adjusted Predictor-Corrector 

Monte Carlo Simulation 

• Discretising SDEs 

• Path simulation 

• Random number generation 

• Option pricing 

 

 

 

 

 

 

 

Part F Some Test Cases and Applications 

 We introduce a number of modern and popular finite difference methods to approximate the 

solution of initial boundary value problems for one factor differential equations.  In particular, we 

apply the schemes from Part D to real life applications. To our knowledge, this is the only course that 

discusses these methods as well as their comparative strengths together with their applications to 

option pricing and hedging.  

 

We also devote two sections to Sensitivity Analysis and we propose at least five methods to 

compute the derivatives of solutions of initial boundary value problems with respect to underlying 

parameters. In finance, these are sometimes called option greeks. 

 

Computing  Sensitivities and Greeks 

• What are sensitivities and why do we need 

them? 

• Divided differences (“bumping”) 

• Sensitivities as solutions of PDEs (Continuous 

Sensitivity Equation (CSE)) 

• Complex Step Method (CSM) 

• Using Cubic Splines 

 

 

Test Case: Black Scholes PDE A-Z 

• Initial boundary value problem for Black 

Scholes PDE 

• Choosing an approximation strategy 

• Comparing with analytical solution 

• Early exercise features 

• Computing the greeks 

• Examples in finance: delta, gamma, vega 

 

Part G Advanced Finite Difference Method 

In this section we discuss several popular finite difference methods to approximate the solutions of 

the PDEs describing two-factor option pricing. We discuss the Alternating Direction Implicit (ADI)  

method and the method of Fractional Steps (“Soviet Splitting”) that originated in the United States 

and the former Soviet Union in the 1960’s, respectively. We apply them to several PDEs in 

computational finance. Of particular importance is the problem of approximating the mixed 

derivatives in the PDE to ensure that the resulting scheme is monotone and hence does not lead to 

spurious oscillations. 

 

We also discuss MOL and ADE for linear and nonlinear PDEs and we compare them with ADI and 

splitting methods. 
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The Method of Lines (MOL) Overview 

• Semi-discretisation 

• Vertical MOL and horizontal MOL (Rothe’s 

method) 

• Example: one-dimensional heat equation 

• Advantages of MOL 

• Application areas 

 

MOL in Detail 

• Stiff and non-stiff ODEs 

• Linear and nonlinear systems 

• Incorporating non-Dirichlet boundary 

conditions into MOL 

• Adaptive and non-adaptive ODE solvers 

 

MOL PDE Examples 

• Black Scholes 

• Cox Ingersoll Ross (CIR) 

• Uncertain Volatility Model (UVM) 

• CEV model 

• Pde for credit value adjustment (CVA) 

• MOL using Boost C++ odeint 

 

ADE for one-Factor and Two-Factor Problems 

• Background and motivation 

• Saul’yev, Barakat-Clark and Larkin variants 

• ADE for convection terms 

• Conditional consistency; stability 

• Boundary conditions 

 

Two-Factor Contenders 

• Alternating Direction Implicit (ADI) 

• Splitting (Fractional Steps method) 

• ADE in two dimensions 

• Other methods 

 

The ADI Method 

• Using ADI for two-factor PDE 

• Mixed derivatives using Craig-Sneyd 

• Test cases: basket options and Heston model 

• Generalising the ADI method 

 

 

 

 

 

 

 

The Operator Splitting Method 

• Yanenko, Marchuk and Strang splittings 

• Explicit and implicit splitting 

• Handling mixed derivatives and boundary 

conditions 

• Splitting and predictor-corrector methods 

• Marchuk 1-2-2-1 model 

 

The ADE Method 

• Origins and background; how it differs from 

ADI and splitting 

• Motivating ADE: from heat pde to convection-

diffusion and mixed derivatives 

• One-sided and centred variants of ADE 

• ADE in 3 factors 

 

Comparing ADI, Splitting, MOL and ADE Methods 

• How they handle mixed derivatives 

• Boundary conditions 

• Accuracy and robustness of the schemes 

• Improving accuracy 

• Can the scheme be parallelised? 

 

Mixed Derivatives 

• Removal using PDE canonical form 

• Modelling correlation: extreme cases 

• Craig-Sneyd, Yanenko 

• Stress-testing mixed derivatives 

• Test case: compare ADI, splitting and ADE for 

Heston model 

 

Test Cases 

• Basket options 

• Heston model 

• Asian options 

• Anchoring model 

• Analytical solutions 
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Part H The FDM “Process” – How to do it. 

The goal of this module is to produce accurate and robust approximations to the solution of differential 

equations using the techniques from the first seven modules.  We take a defined and reproducible 

process-driven approach by taking a PDE model, approximating this model by one or more finite 

difference schemes and then implementing the resulting algorithms in a favourite language such as C++ 

or Python. The best way to learn all this stuff is to take a concrete project and work it out A-Z. 

 

The main learning objectives and skills achieved in this module are: 

• Learn the full mathematical/numerical/programming trajectory, from problem description to number 

crunching. 

• Develop skills to analyse and understand the trade-offs and alternative approaches at each stage of 

the trajectory. 

• An extensive collection of modern and industrial-strength finite difference schemes that you can 

apply to a range of ODEs, PDEs and SDEs. 

 

Gaining Insight (Heuristics and How to Solve it) 

• Analogy 

• Variation of the problem 

• Auxiliary problem 

• Precedence 

• Decomposition and recombination 

• Generalisation, specialisation and induction 

 

Basic Accuracy Testing (Proof-of-Concept) 

• Estimating the local truncation error 

• The effects of domain truncation and domain transformation 

• Which boundary conditions are optimal? 

• Choice of matrix solver 

 

Improving Accuracy and Robustness 

• Non-smooth payoffs 

• Convection-dominance and exponential fitting 

• Computing option sensitivities 

• Automatic testing: producing a report 

 

Testing Accuracy: Sparring Partners 

• Is there an analytic/quasi-analytic solution to test against? 

• Monte Carlo solution 

• Binomial method solution 

• Two-factor analytic solution 


