
 1

Object-oriented and Functional Programming in Python
Language, Libraries and modern Design Patterns

Course originator: Dr. Daniel J. Duffy, Datasim Education BV

Summary of the Modules
The course consists of several modules. Each module deals with a major well-defined topic.

Module 1: Essential Python for those with no experience of programming or of Python.
Module 2: Software design principles and their realisation in Python.
Module 3: Object-Oriented Programming (OOP) in Python.
Module 4: Functional Programming (FP) in Python.
Module 5: Advanced Python Topics.
Module 6: System Development and Design Patterns in Python applications.
Module 7: Numerical Libraries.

This course can be taken on two levels: first, for beginners and novices, we advise modules 1 to 4
while modules 5 and 8 are for more experienced programmers as well as for those who feel
confident with the first four modules.

Module 1 Preamble, Learning to break fall and Foundations
The goal of this module is to introduce a number of fundamental programming features and syntax
and how they are supported in Python. In particular, we discuss vital concepts such as variables,
functions and program control structure and we show how they are implemented in Python by
taking simple but at the same time illustrative examples. These examples will be extended and
generalised in later modules. In this sense we take an incremental approach by building up expertise
using already developed results and code.

It is assumed that you have installed Python on your system and that you are comfortable with the
Python tools and IDE that you are using. All you need is basically an environment in which you can
create Python code and then compile and run it. The focus is on learning to become a good Python
programmer and preparing the student for later modules.

By completing this module you will have gained essential and fundamental hands-on Python
experience. The analogy is learning how to break fall before taking judo lessons.

We realise that many students do not necessarily have a formal education in Computer Science (CS)
and for this reason we add a number of sections on data structures, algorithms and other important
concepts that help in your understanding of Python.

 2

Variables and Functions
• Lexical Structure

• Python Strings

• Fundamental Data Types

• Functions

• Code layout rules

• Garbage collection

Program Structure
• Scope and Lifetime of Variables

• Control Flow Structure

• Looping and Iteration

• Iterables, Iterators and Tuples

Fundamental data types
• Numbers and Numeric Operations

• Testing for valid numbers

• Analysis of floating-point numbers

Control flow statements
• If and if-else statements

• While statement

• For statement

• Iterators

Expressions and Operators
• What is an expression?

• Operators and operator precedence in
expressions

• Numeric operations and conversions

• Sequence operations

Data Types
• Vectors and lists

• Deque, queue and priority queue

• Sets

• Associative arrays and dictionaries

Algorithm Analysis
• Asymptotic behaviour of functions

• Asymptotic order; orders of complexity

• Hierarchy of orders

• Order relationships

• Hard Problems

Types of Algorithms
• Searching and sorting

• Merge

• Insertion, remove

• Linear and binary search

Module 2 Background and Design Foundations
The goal of this very important module (all modules are important) is to introduce and discuss the three
major design philosophies/paradigms/styles that are supported in Python. It is important to understand
them and to use them to build robust and flexible applications:

• Object oriented style: programs built around classes, inheritance and composition.

• Functional style: programs built based on stateless functions.

• Modular programming: decompose a problem into loosely coupled modules.

We introduce these concepts by discussing them in such a way that provides insights into which style or
combination of styles are most suitable for a given set of requirements. To this end, we integrate these
concepts into the slides, sample code and exercises as we progress in the course. In this case we take a
range of examples, starting with simple cases before moving to more advanced and closer to real-life
examples as elaborated in later modules.

Module 2 prepares the way for Modules 3 and 4. In particular, module 2 discusses the object-oriented
and functional programming paradigms from a language-independent, correct and rigorous perspective.
An extra advantage is that the topics in this module are based on the course originator’s experience with
OOP and FP during a period of 30 years in industrial and academic software projects.

 3

Introduction to Object Orientation
• Classes and Objects

• Attributes and behaviour

• Encapsulation and information hiding

• Constructors, setter and getter functions

Advanced Object Oriented Modelling
• Composition and inheritance

• Avoiding overuse of inheritance

• Polymorphism and Duck Typing

• Essential UML Class Diagrams

Important Built-in Functions
• classmethod

• Hasattr, getattr, setattr

• Inputting data

• Namespaces, globals and locals

• property attribute

• repr

• staticmethod

A gentle Introduction to Functional
Programming
• What is functional programming?

• Function signature: ‘pure’ functional languages

• Lambda functions

• First-order and higher-order functions

Advanced Functional Programming
• A taxonomy of functions in Python

• Lazy and eager evaluation

• Recursion

• Currying and partial function evaluation

Modules and Packages
• Organising your classes

• Creating modules and accessing their contents

• Nested modules and packages

• Absolute and relative imports

Abstract Base Classes and the abc Module
• What is an abstract base class?

• Abstract methods

• Subclassing scenarios (single and multiple
inheritance)

• Registering concrete classes

• Incomplete Imlementations

• Concrete methods in ABCs

• Abstract properties

• Static methods

Module 3 Object Oriented Programming in Python
In this module we show how to write correct object-oriented code in Python by which we mean code
that is maintainable and that bears some resemblance to real-life applications. We transfer the reusable
experience gained from our multi-year projects in C++ and C# (for example, Computer Aided Design
(CAD), industrial software and computational finance) to Python. We focus on stripped-down but
realistic examples that promote good design principles. In particular, we discuss the relative merits of
inheritance and composition and when (and when not!) to use them. We also see how some famous
design patterns naturally emerge when we design flexible software. In this way, we try to get our
designs right first time. More realistically, we develop adaptable software that evolves as a series of
prototypes. We quantify and formalise this remark in Module 6 when we introduce Design Patterns.

We also introduce a number of essential data types and containers that classes use to hold and share
data. Finally, we pay attention to “object lifecycle management” by using Python functionality and
modules to improve the reliability and efficiency of object creation and memory reclamation using
garbage collection.

Creating Classes in Python
▪ Naming conventions
▪ My first class A-Z
▪ Constructors and initialisation
▪ Creating objects and class instantiation
▪ Access control issues

Creating Larger Classes
▪ Composition and Delegation
▪ Whole-part objects in Python
▪ Arrays and collections of objects
▪ Inheritance and subclassing
▪ Combining inheritance and composition

 4

Fundamental Arrays and Data Structures
▪ Basic data types
▪ One-dimensional arrays; matrices
▪ n-dimensional arrays (ndarray)

▪ Data type objects (dtype)

▪ Tuples, dictionaries and lists

Weak References to Objects

• References, memory leaks

• Reference callbacks

• Finalising objects

• Proxies and caching objects

Duplicate Objects
• Shallow and (recursive) deep copies

• Garbage collection

• Customising copy behaviour

• A palette of comparison operators

Memor-Mapped Files

• Read and write

• Copy mode

• Regular Expressions

Module 4 Functional Programming (FP) in Python
In this module we discuss the extent to which Python supports programming in a functional style. As
such, Python is not a functional programming language. It does have a number of very useful features
that we can use to promote the flexibility and maintainability of applications.

Functional programming decomposes a problem into a set of functions. Functions take input and
produce output. Functions have no internal state that affects the output produced for a given input. It is
easy to compose functions and to customise them to suit new requirements. It is also possible to define
higher-order functions that accept functions as input and produce a function as output.

It is possible to combine the functional and object-oriented programming styles as we shall see in
Module 6, in particular when creating multiparadigm design patterns.

Introduction to Higher-order Functions (HOFs)
▪ What can we do with HOFs?
▪ Simplify HOFs by lambda functions and

lambda expressions
▪ Lambdas and the lambda calculus
▪ Apply a function to a collection: map ()
▪ Pass/reject data with filter ()

Advanced Functional Programming
▪ Lazy and eager evaluation
▪ Applications of filter ()

▪ Generator expressions
▪ Recursion and reduction
▪ Folds
▪ Decorators

▪ Iterables and itertools module

Exception Handling in Python Programs
▪ Raising exceptions
▪ Handling exceptions
▪ Exception hierarchy and built-in exceptions

▪ User-defined exceptions

Some Standard Library Modules
• sys (state of Python interpreter)

• functools (functions and types supporting
functional programming)

• heapq (keep list “nearly sorted”)

• copy (deep and shallow copies of objects)

functools in Detail
• Decorators

• Partial objects

• Acquiring function properties (objects and
decorators)

• partial() and partialmethod()

• Caching and memoisation

• Generic functions

• single dispatch

Itertools
• Merging and splitting

• map()

• Counting and filtering

• accumulate()

• groupby()

 5

The operator Module
• Logical, comparison and arithmetic operators

• Sequence operators

• In-place operators

• Attribute and Item Getters

• Combining operators and custom classes

Universal Functions

• Unary and binary functions

• Vectorization and broadcasting

Slices and slicing

• Concatenation and splitting

• Fortran and C order

• Memory layout settings

Module 5 Advanced Python
In this module we introduce two major areas in the Python language. First, we discuss functionality and

modules that process data and text, in particular file I/O, text I/O, serialisation and deserialisation of

data and persistence. We also give an introduction to structured text and XML (eXtensible Markup

Language) and how it is implemented in Python.

Many applications need to support the storage of data and to this end we discuss the main persistence

and data exchange mechanisms such as pickle, shelve, dbm, sqlite3 (embedded relational database), csv

and xml.tree. In most cases we wish to store configuration data to initialise objects and systems as well

as high-level aggregated data. This allows us to exchange information with dataframes in pandas and

other Python libraries. In particular, they play an important role in when designing large systems.

The second part of this module is concerned with the application of Python functionality that uses the
processing power of modern multiprocessor/multicore computers. The overriding reason for using this
functionality lies in the performance improvements when compared with code that runs on a single
processor/core. To this end, we introduce three main techniques, namely threads, processes and tasks
(futures). We also introduce the concepts of concurrency and parallelism.
The objective of this part of the course is to introduce parallel programming and concurrency models in

Python. No previous knowledge of parallel programming is assumed. We take an incremental approach

while introducing several parallel design patterns to improve the speedup of applications. Finally, we

discuss coroutines (generalised subroutines) and how they can be used in event-driven software and

notification design patterns which we discuss in Module 6.

Module 5 has 30 hands-on programming exercises. They range from 101 examples to help us learn the
relevant Python functionality to more extensive design and application-level problems.

Regular Expressions in Python
• What is a regular expression?

• The re module

• Pattern-string syntax

• Match and Search

• Regular expression objects

Files and File Operations
• The io module

• Creating file objects; attributes and methods

• In-memory Files

• Auxiliary Modules for File I/O

• Filesystem Operations

Basic XML Syntax

• Structure of XML documents

• Tags, elements and element structure

• Attributes and comments

• Root element; well-formedness

 6

Advanced XML
• Namespaces and their advantages

• Identifying namespaces by URLs

• XML Schema and relation to XML documents

• Built-in and user-defined simple types

• Complex types

Structured Data: An Introduction to XML
• What is XML?

• ElementTree functionality and class

• Element class

• Parsing XML: the options

An Introduction to Numeric Processing
• The math and cmath modules

• Random and pseudorandom numbers

• The array module

• Global overview of numpy

Overview of Concurrency
• What is concurrency?

• Parallelism

• Threads and Tasks

• Processes

Threads in Python
• What is a thread?

• The threading Module

• Thread objects

• Thread synchronisation

• Locking

• Condition objects and event objects

Advanced Threading
• Timers

• Barriers

• Thread Local Storage

• The queue Module

Multiprocessing in Python
• What is a process?

• Sharing state: Value, Array and Manager

• Multiprocessing pools

• Comparing threads and processes

Introduction to Parallelism
• Data and task parallelism

• Data dependency graph

• Futures and promises

• Tasks

Tasks in Python
• The concurrent.futures module

• Thread and process pool executors

• The Future class

• Module functions

• Exception classes

Asynchronous Operations: Foundations
• Event-driven programming

• Blocking and nonblocking code

• Callback-based async architectures

• Coroutine-based async architectures

Asynchronous Operations in Python
• The asyncio module

• Coroutines in asyncio

• Event loops

• Connections and server

• Tasks and Futures

• I/O multiplexing

Persistence in Python (An Introduction)
• Serialization and deserialization

• Object persistence

• The json module

• The pickle and cPickle modules

DBM Modules
• Pre-relational databases

• Associative arrays

• Primary key and buckets

• Hash tables and extendible hashing

• Efficient high-speed storage

Other Persistence Mechanisms
• The marshal module

• marshal versus pickle

• csv module

• sqlite3

• Which database for which problems?

 7

Module 6 Designing Maintainable Python Programs and Applications
In this module we introduce proven, unique (based on originator’s experience in software design) and
repeatable strategies to design robust and maintainable Python code. We have created the topics in this
module in order to fill a major gap (as we see it) in current programming practice. In very general terms,
we take a top-down design approach by first defining what we wish to achieve (the goals of the software
system) and then decomposing the system into loosely-coupled and cohesive subsystems and modules
that cooperate to satisfy those goals. In short, we take the following approach (to paraphrase the
mathematician George Polya):

First, you have to understand the problem.
After understanding, make a plan.
Carry out the plan.
Look back on your work. How could it be better?

The basic approach is to keep refining our design until we arrive at the stage whereby we can map
modules to Python language features and design patterns. To summarise, we use a combination of top-
down decomposition and bottom-up programming and prototyping to ensure that we create the
software product as demanded by the requirements.

A special and innovative feature of this module (based on the design methods from the course
originator) is how we upgrade and improve the somewhat outdated object-oriented design patterns
from the 1990s by integrating them into a new multi-paradigm framework based on a flexible
combination of the object-oriented and functional programming styles.

The originator of this course has been applying design patterns and their extensions in both education
and industrial projects since 1992. The experience gained has been integrated into the course to help us
produce maintainable, efficient and flexible Python code for applications in process control, computer
aided engineering, order processing and computational finance, and other areas. See Domain
Architectures by Daniel J. Duffy (Wiley 2004) for a discussion of categories of computer applications.

Having finished this module you will be in a position to appreciate the following topics:

• Build on design patterns experience.

• For a given feature/requirement, find the appropriate design pattern.

• Start with minimal patterns, move up to more complex cases.

• In later modules we can integrate design patterns into applications.

Software Architecture: Principles
• Context diagram and data flow

• System Decomposition; finding modules and
classes

• Creating a software prototype and production
systems

• Testing and debugging code

Design Best Practices
• Single Responsibility (SRP)

• Coupling and cohesion

• Information hiding

• Interface segregation

• Dependency inversion

An Introduction to Design Patterns
• What, why, when and how Design Patterns

• Creational, structural and behavioural patterns

• Discovering and using patterns in your
applications

• The top design patterns

 8

Creational Patterns
• Factory Method

• Abstract Factory

• Builder

• Prototype

Structural Patterns
• Adapter

• Decorator

• Flyweight

• Composite

• Bridge

• Proxy

Behavioural Patterns
• Mediator

• Command

• Strategy and Template Method

• Visitor

• Observer

• Propagator

• Command

Test Cases and Applications
The top 5 critical design patterns
Learning from previous projects and languages
1: Monte Carlo simulation
2 Interactive Access Systems: Drink Vending

Machine
3: Data Tracking: Open Processing

Module 7 Supporting Python Libraries
We include a number of sections that discuss useful Python functionality that can be used in your applications. A
more comprehensive discussion of Python libraries is given in the hands-on course distance-learning-applied-
numerical-methods-with-python-and-python-libraries

This module is rather specialised and may be skipped on a first reading as it is focused on using
(numerical) libraries that we can use in applications. It does not discuss advanced Python functionality
nor design as such but the module will be important when creating numerical applications, for example
in engineering, computational finance and data science.

Interpolation

Fundamentals
• Function space and norms

• Approximation of functions

• Weierstrass approximation theorem

• Interpolation in one and several dimensions

Cubic Spline Interpolation
• What is a cubic spline?

• Boundary conditions

• Order of convergence

• Approximating first and second derivatives

• ‘Spline-on-spline’ approximation

Statistical Distributions
• Discrete and continuous distributions

• Univariate and bivariate normal probability
distributions

• Uniform distribution

• Chi squared and non-central chi squared
distributions

• Poisson distribution

• C++11 and Boost C++ support

Random Number Generation
• Random number engines

• Linear congruential

• Mersenne Twister

• Nonlinear generators

• C++11 and Boost C++ support

Random Sampling
• Simple random data

• Permuting and shuffling randomly

• Continuous and discrete distributions

• Drawing random samples

• Creating histograms

Mathematical Functions
• Trigonometric and inverse trigonometric

functions

• Rounding

• Sums, products and differences

• Exponential and logarithmic function

https://www.datasim.nl/onlinecourses/106/distance-learning-applied-numerical-methods-with-python-and-python-libraries
https://www.datasim.nl/onlinecourses/106/distance-learning-applied-numerical-methods-with-python-and-python-libraries

