
1

Course Computational and Quantitative Finance in C++

Contents

Module 1: Primer and Fundamental C++ Syntax
In this module we introduce basics of the C++
language, including essential syntax, how to create
functions and classes and how to integrate the code
into a C++ project.

 Refresher C language

 Learning the C++ project environment

 From source code to running program

 Creating basic C++ classes: header and code files

 Creating robust classes (const, call by
value/reference)

 Operator overloading in C++

 Creating user-defined operators

 Memory management: heap, stack and static

 Implementing contracts: exception handling in C++

 Project: creation simple C++ classes for financial
derivatives

After having completed this module you will be in a
position to write, compile and run C++ applications
and be able to test and debug code quickly and
effectively. This means that you will not lose
valuable time. We take a number of examples from
finance, namely exact formulas for option pricing
and the creation of C++ classes that model
derivatives.

Module 2: Advanced C++
In this module we introduce a number of advanced
techniques that promote the flexibility and
robustness of your C++ applications. This is a crucial
module because many C++ applications use these
techniques and they allow us to extend and modify
system code with a minimum of impact on the
stability of the application.

 Pointers: native C++, C++0X pointers

 Modelling functions: by pointers and by function
objects

 Applications in finance

 An introduction to inheritance and composition in
C++

 Virtual and pure virtual functions

 Tips and guidelines when using inheritance

 Combining inheritance and composition

 Run-Time Type Information (RTTI)

 Factoring common code using the Template Method
Pattern

 Project: creating flexible payoff hierarchies

After having completed this module you will be able
to create extendible and understandable C++ class
hierarchies for financial derivatives. We shall use
these classes as reusable building blocks when we
develop applications in later modules.

Module 3: C++ Templates and the Standard
Template Library (STL)
This module introduces the student to Generic
Programming (GP) and its implementation in C++,
namely the template mechanism. We discuss the
fundamental syntax issues and we show how to
create templated functions and classes.
Furthermore, we show how to integrate and
combine templates with the inheritance and
composition techniques that we discussed in
previous modules. Having learned what templates
are we then proceed to discussing the most
important components of STL and their applications.

 An introduction to the generic programming model

 C++ templates: functions and classes Template
specialization

 Combining templates with inheritance and
composition

 An overview of STL

 STL sequence containers: list, vector, deque

 STL iterators

 Associative containers: map, set, multimap, multiset

 STL algorithms: searching, sorting, extraction

 Mutating and Nonmutating algorithms

 Modifying and Nonmodifying algorithms

2

 Project: using templates for financial applications

After having completed this module the student will
understand template programming in C++.

Module 4: Design Patterns
In this module we introduce a number of design
techniques that we deploy in C++ so that our
applications can be customized when requirements
change (as they inevitably do). In particular, we give
an overview of the famous Design Patterns (23 in
total) and we apply the most important ones to
examples and applications in finance.

 What is software design?

 Quick overview of the Unified Modeling Language
(UML)

 The Gamma ("Gang of Four" classification

 Creational patterns: Factory, Singleton, Builder,
Prototype

 Structural patterns: Bridge, Composite, Facade, Proxy

 Behavioural patterns I: Template method, Strategy,
Observer

 Behavioural patterns II: Visitor, Command, Mediator

 Applying design patterns in finance: the steps

 Project: designing and implementing FDM for Black-
Scholes PDE

After having completed this module you will be able
to discover and apply the most appropriate design
patterns for a given problem in finance.

Module 5: Libraries and Interfacing Issues
Whereas the code in Module 4 was concerned with
application logic and algorithms this module
discusses a number of features and tools that allow
us to develop fully-fledged applications, in particular
the input, processing and output modules in an
application.

 C++ Excel integration: xll, Automation and COM
Addins

 Creating xll applications

 Automation Addins and worksheet functions

 COM Addins

 Registration, activation, libraries

 An introduction to ATL (Active Template Library)

 Overview of the Boost library

 Boost random number generators

 Boost multi-array and property map libraries

 Introduction to XML

 DLLs and Libs

 Calibration

 Project: developing Excel Addins for Monte Carlo and
Fixed Income Applications

After having completed this module you will be able
to integrate your code with a number of standard
software environments, such as Excel, Boost and
XML.

Module 6: Integration and Applications: Overview
This is the last module of the course and it is here
that we create a fully-fledged application using the
experience that we have gained in the first five
modules. You can choose the kind of application
(equity, fixed income, commodity) and the numerical
technique (FDM, Monte Carlo, ...) you wish to use.

 Analysis and system decomposition

 Defining inter-system interfaces

 Applying the GOF patterns

 An introduction to multi-threading and parallel
programming

 Implementing finance applications in C++ with
OpenMP

 Testing and profiling your application

 Integration with Excel

 Equity, interest rate and other applications in finance

 Monte Carlo, FDM, quadrature and lattice solutions

Module 7: The Monte Carlo Method in C++
Stochastic Differential Equations (SDE)
 Geometric Brownian Motion (GBM)

 CEV model

 Stochastic volatility

Finite Difference Method for SDE
 Euler and Milstein method for GBM

 Predictor-corrector method

 QE method

Examples
 Short-rate

 Heston

 Jump models

Monte Carlo Engine in C++
 Modular decomposition

 Design of engine (Produce-consumer)

 Random number generators

 Parallel programming

Module 8: The Finite Difference Method in C++
Finite Difference Method (FDM)
 One-factor models

 Plain and barrier options

 Early exercise features

 The Crank Nicolson method

 Comparing FDM with trinomial method

3

Alternating Direction Explicit (ADE) Method
 Background and motivation

 ADE for one-factor models

 ADE for nonlinear pricing models

 Advantages of ADE

Two-Factor Model
 ADI and Splitting Methods

 Craig-Sneyd method

 Mixed derivatives and Janenko method

 ADE for two-factor problems

Module 9: Interest Rate Models in C++
Overview of Bond and Fixed Income Pricing
 Bond Pricing: Design, Implementation and Excel

Interfacing

 Overview of bonds and kinds of bonds

 Bond price and bond yield

 Convexity

 (Macauley) duration

 Accrued interest and dirty price

 Day count conventions

Short-term Interest Rate Futures and Options
 Introduction (short term interest rate futures and

option description)

 Organizing and manage futures data and code

 Conventions for Liffe Futures

 Pricing Option

 Working Example: portfolio of options

Interest Rate Models
 Vasicek, CIR, Hull-White

 Exact solutions

 Approximate solutions: lattice, PDE, MC

 Calibration

Module 10: Excel Interoperability
 Creating Automation Add-ins in C++

 Guid, ProgId, ClassInterface

 Referencing the Excel Application

 Registering COM components

 Loading and using Automation Add-ins

 Versioning

 Volatile Cells

COM Add-ins
 Background

 ATL projects with IDTExtensibility2 support

 Managed and unmanaged add-ins

 VS add-ins and shared add-ins

 Shared Add-in Wizard

 Extendibility projects

Examples
 Monte Carlo Engine

 PDE solvers

 Integration with boost Math Toolkit

After having completed this module you will have
used C++ in combination with mathematical
methods for finance to produce a working system.

Project: term (final) project
The examiners will review your project and a small
exam will be given.

