
1 
 

Advanced C++11 and C++14 (code CPPA-11) 

 

Course Contents 

A Foundations 
Quick Review of C++98 
 Function pointers 

 Function overloading and virtual functions 

 The categories of polymorphic behaviour 

 Using (and misusing) inheritance to realise subtype 
polymorphism 

 
Fundamentals of Functional Programming (FP) 
 Short history of FP 

 Higher-order functions 

 Recursion; passing a function to itself 

 Strict and non-strict (delayed) evaluation 

 Pure functions and lambda functions 

 
Functions and Data 
 Function composition 

 Closures 

 Currying and uncurrying 

 Partial function application 

 Fold and continuations 

 Functional Programming in C++ 

 
Overview C++ as a multi-paradigm programming 
language 
 Universal function type (polymorphic) wrappers 

(std::function) 

 Binders and predefined function objects (std::bind) 

 Lambda functions versus binders 

 A uniform function framework 

 
Lambda Functions 
 What is a lambda function? 

 The closure of a lambda function 

 Using lambda functions with auto 

 The mutable keyword 

 
Using Lambda Functions 
 Configuring applications 

 With algorithms 

 As sorting criteria 

 As hash function 

 Lambda functions versus function objects 

 A Taxonomy of Functions in C++ 

 
Function Pointers and free Functions 
 Object and static member functions 

 Function objects 

 Lambda functions 

 Events and signals (Boost signals2 library) 

 
B Core Topics 
IEEE 754 
 Overview of IEEE 754 

 Numerics and IEEE 754 

 Rounding rules and exception handling 

 Normal, subnormal and infinite numbers; NaN 

 Machine precision 

 Rounding and cancellation errors 

 
Numerics in C++ 
 std::numeric_limits<> 

 Directed roundings 

 Floating-point decomposition functions 

 Error analysis 

 Comparing floating-point numbers 

 
More on Lambda Functions 
 What is a lambda function A-Z? 

 Stored lambda functions 

 Using lambda functions to create higher-order 
functions 

 Lambda versus std::bind 

 
Advanced Lambda Functions 
 Generic lambda functions 

 Generic lambda functions versus templates 

 Capture modes 

 Using lambda with decltype and std::forward 

 
Applications 
 Creating an algebra of higher-order functions 

 Using lambda functions to configure applications 

 Generalised lambda capture 

 Lambda functions and software design patterns 

 Advanced Features 

 



2 
 

Introduction to Type Traits 
 Introduction to metaprogramming 

 Defining behaviour based on type 

 Type categories 

 Using type traits in applications and libraries 

 
Type Categories 
 Primary (is a generic type of a given type?) 

 Composite (is a type scalar, compound or object?) 

 Properties (e.g. is a class abstract) 

 Relationships (comparing types In some way) 

 
Some Applications of Type Traits 
 Robust numerics libraries 

 Compile-time Bridge design pattern 

 Type-independent code 

 
C Data Structures, Libraries and STL 
Review of STL Containers 
 Sequence containers 

 Associative containers 

 Unordered containers 

 Container adapters 

 User-defined containers 

 Hashing 

 
Hash function and hash table 
 Categories of hash function 

 Creating custom hash 

 Applications 

 Boost and STL Heap 

 
Heap ADT 
 Variants (Fibonacci, skew, priority queue, etc.) 

 Heap and computational efficiency 

 Boost Heap versus STL heap 

 Unordered Containers 

 
Differences with (ordered) associative containers 
 Abilities of unordered containers 

 Complexity analysis 

 Integration with STL and other Boost libraries 

 The Bucket interface 

 Tuples 

 
Modelling n-tuples (pair is a 2-tuple) 
 Using tuples as function arguments and return types 

 Accessing the elements of a tuple 

 Advantages and applications of tuples 

 Tuple member functions 

 
Fixed-sized Arrays std:array<> 
 Why do we need std:array<> ? 

 Operations and abilities 

 Using arrays as C-Style arrays 

 Combining arrays and tuples 

 
D Parallel Programming 
The new C++ Memory Model 
 Sequential consistency 

 Ordering non-atomic operations 

 Relaxed consistency models 

 Total order 

 
Introduction to C++ Threads 
 What is a thread? 

 Creating a thread with various callable objects 

 Thread function: pros and cons 

 Waiting on a thread; detaching a thread 

 Using lambda functions 

 
Atomics 
 Atomic types and atomic operations 

 Atomic load, store, increment, decrement 

 Atomic flags 

 Smart pointers and thread-safe pointer interface 

 
How Threads Cooperate, I 
 Thread synchronisation 

 Locks and mutex 

 Exception-safe lock 

 Sleep and yield 

 
How Threads Cooperate, II 
 Thread notification 

 Condition variables 

 Wait and notify 

 Example: Producer-Consumer pattern 

 
C++ Concurrency: Tasks 
 Motivation 

 Data Dependency graph 

 Tasks versus Threads 

 Concurrency versus Parallelism 

 
C++ Tasking in Detail 
 Futures and shared futures 

 Promises 

 Packaged tasks 

 Waiting on tasks to complete 

 
Your Trainer 
Daniel J. Duffy started the company Datasim in 1987 
to promote C++ as a new object-oriented language 
for developing applications in the roles of developer, 
architect and requirements analyst to help clients 
design and analyse software systems for Computer 
Aided Design (CAD), process control and hardware-
software systems, logistics, holography (optical 



3 
 

technology) and computational finance. He used a 
combination of top-down functional decomposition 
and bottom-up object-oriented programming 
techniques to create stable and extendible 
applications (for a discussion, see Duffy 2004 where 
we have grouped applications into domain 
categories). Previous to Datasim he worked on 
engineering applications in oil and gas and 
semiconductor industries using a range of numerical 
methods (for example, the finite element method 
(FEM)) on mainframe and mini-computers. 

Daniel Duffy has BA (Mod), MSc and PhD degrees in 
pure and applied mathematics and has been active 
in promoting partial differential equation (PDE) and 
finite difference methods (FDM) for applications in 
computational finance. He was responsible for the 
introduction of the Fractional Step (Soviet Splitting) 
method and the Alternating Direction Explicit (ADE) 
method in computational finance. He is also the 
originator of the exponential fitting method for time-
dependent partial differential equations. 

He is also the originator of two very popular C++ 
online courses (both C++98 and C++11/14) on 
www.quantnet.com in cooperation with Quantnet 
LLC and Baruch College (CUNY), NYC. He also trains 
developers and designers around the world. He can 
be contacted dduffy@datasim.nl for queries, 
information and course venues, in-company course 
and course dates 

mailto:dduffy@datasim.nl

