
1

Fundamentals of C++11 and C++14 (code CPPF-11)

Course Contents

Part I Background
Design Goals
 Stability and compatibility with C++98

 Increase type safety

 Increase performance

 Make C++ easy to learn

Global Overview
 Core language usability enhancements

 Core language functionality enhancements

 C++ Standard Library changes

 Multithreaded memory model

 Removed and deprecated features

II Fundamentals and Essential Language Features
New Language Features
 Uniform initialization and initializer lists

 Default template parameters

 Function declaration syntax

 New fundamental data types

Move Semantics
 What is move?

 Copying versus moving: performance

 Rvalue references

 Move constructor and move assignment operator

 Rule-of-Three and Rule-of-Five

Memory Management and Smart Pointers
 Design rationale

 Class shared_ptr

 Destruction policies

 Class weak_ptr

 Class unique_ptr

Using Smart Pointers
 Smart pointers versus raw pointers

 Classes with embedded pointers

 Reengineering legacy code and software design
patterns

 Move semantics with shared pointers

Bits and Pieces: Usability Enhancements
 Type alias (alias template)

 Automatic type deduction and auto specifier

 Range-based for loops

 nullptr

 New fundamental data types

III Data Types and Data Containers
Basic Types
 Unrestricted unions

 std::bitset

 std::ratio

 Timepoint and clock

Basic Containers
 std::forward_listForward list

 Fixed-sized array std::array<>

 std::pair<> and std::tuple<>

 Exception classes

Applications of Basic Containers
 Tuples as function return types and input arguments

 Fixed-sized matrices based on std::array<>

 Using tuples to hold configuration data; tuple nesting

IV C++ Classes and Class Modelling
New Class-related Functionality
 explicit specifier

 Deleted and defaulted member functions (delete,
default)

 Generalised constant expressions (constexpr)

 override and final

 noexcept

 Uniform initialization

Class Templates
 Template declaration

 Implementing the member functions

 Using the template class

 Default template arguments

 std::decltype and std::declval

 Examples

2

Function Templates
 What is a function template?

 Defining the template

 Using the template

 Argument deduction

 Overloading function templates

 Advanced Template Programming

 Partial specialization

 Nested template classes (for example, 1:N
aggregations)

 Traits and policy classes

 Template template parameters

V The C++ Function Panorama
Fundamentals of Functional Programming (FP)
 Short history of FP

 Higher-order functions

 Recursion; passing a function to itself

 Strict and non-strict (delayed) evaluation

 Pure functions and lambda functions

Lambda Functions
 What is a lambda function?

 The closure of a lambda function

 Using lambda functions with auto

 The mutable keyword

A Taxonomy of Functions in C++
 Callable objects

 Function pointers and free functions

 Object and static member functions

 Function objects

 Lambda functions

Applications
 Using std::function as universal function type

 std::function and its target methods

 Using lambda functions to configure applications

 std::function as an alternative to virtual
functions

 Regex

 Random number generator

Your Trainer
Daniel J. Duffy started the company Datasim in 1987
to promote C++ as a new object-oriented language
for developing applications in the roles of developer,
architect and requirements analyst to help clients
design and analyse software systems for Computer
Aided Design (CAD), process control and hardware-
software systems, logistics, holography (optical
technology) and computational finance. He used a
combination of top-down functional decomposition
and bottom-up object-oriented programming
techniques to create stable and extendible
applications (for a discussion, see Duffy 2004 where
we have grouped applications into domain
categories). Previous to Datasim he worked on
engineering applications in oil and gas and
semiconductor industries using a range of numerical
methods (for example, the finite element method
(FEM)) on mainframe and mini-computers.

Daniel Duffy has BA (Mod), MSc and PhD degrees in
pure and applied mathematics and has been active
in promoting partial differential equation (PDE) and
finite difference methods (FDM) for applications in
computational finance. He was responsible for the
introduction of the Fractional Step (Soviet Splitting)
method and the Alternating Direction Explicit (ADE)
method in computational finance. He is also the
originator of the exponential fitting method for time-
dependent partial differential equations.

He is also the originator of two very popular C++
online courses (both C++98 and C++11/14) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He can
be contacted dduffy@datasim.nl for queries,
information and course venues, in-company course
and course dates

mailto:dduffy@datasim.nl

