
1

Fundamentals of C++11 and C++14 (code CPPF-11)

Course Contents

Part I Background
Design Goals
 Stability and compatibility with C++98

 Increase type safety

 Increase performance

 Make C++ easy to learn

Global Overview
 Core language usability enhancements

 Core language functionality enhancements

 C++ Standard Library changes

 Multithreaded memory model

 Removed and deprecated features

II Fundamentals and Essential Language Features
New Language Features
 Uniform initialization and initializer lists

 Default template parameters

 Function declaration syntax

 New fundamental data types

Move Semantics
 What is move?

 Copying versus moving: performance

 Rvalue references

 Move constructor and move assignment operator

 Rule-of-Three and Rule-of-Five

Memory Management and Smart Pointers
 Design rationale

 Class shared_ptr

 Destruction policies

 Class weak_ptr

 Class unique_ptr

Using Smart Pointers
 Smart pointers versus raw pointers

 Classes with embedded pointers

 Reengineering legacy code and software design
patterns

 Move semantics with shared pointers

Bits and Pieces: Usability Enhancements
 Type alias (alias template)

 Automatic type deduction and auto specifier

 Range-based for loops

 nullptr

 New fundamental data types

III Data Types and Data Containers
Basic Types
 Unrestricted unions

 std::bitset

 std::ratio

 Timepoint and clock

Basic Containers
 std::forward_listForward list

 Fixed-sized array std::array<>

 std::pair<> and std::tuple<>

 Exception classes

Applications of Basic Containers
 Tuples as function return types and input arguments

 Fixed-sized matrices based on std::array<>

 Using tuples to hold configuration data; tuple nesting

IV C++ Classes and Class Modelling
New Class-related Functionality
 explicit specifier

 Deleted and defaulted member functions (delete,
default)

 Generalised constant expressions (constexpr)

 override and final

 noexcept

 Uniform initialization

Class Templates
 Template declaration

 Implementing the member functions

 Using the template class

 Default template arguments

 std::decltype and std::declval

 Examples

2

Function Templates
 What is a function template?

 Defining the template

 Using the template

 Argument deduction

 Overloading function templates

 Advanced Template Programming

 Partial specialization

 Nested template classes (for example, 1:N
aggregations)

 Traits and policy classes

 Template template parameters

V The C++ Function Panorama
Fundamentals of Functional Programming (FP)
 Short history of FP

 Higher-order functions

 Recursion; passing a function to itself

 Strict and non-strict (delayed) evaluation

 Pure functions and lambda functions

Lambda Functions
 What is a lambda function?

 The closure of a lambda function

 Using lambda functions with auto

 The mutable keyword

A Taxonomy of Functions in C++
 Callable objects

 Function pointers and free functions

 Object and static member functions

 Function objects

 Lambda functions

Applications
 Using std::function as universal function type

 std::function and its target methods

 Using lambda functions to configure applications

 std::function as an alternative to virtual
functions

 Regex

 Random number generator

Your Trainer
Daniel J. Duffy started the company Datasim in 1987
to promote C++ as a new object-oriented language
for developing applications in the roles of developer,
architect and requirements analyst to help clients
design and analyse software systems for Computer
Aided Design (CAD), process control and hardware-
software systems, logistics, holography (optical
technology) and computational finance. He used a
combination of top-down functional decomposition
and bottom-up object-oriented programming
techniques to create stable and extendible
applications (for a discussion, see Duffy 2004 where
we have grouped applications into domain
categories). Previous to Datasim he worked on
engineering applications in oil and gas and
semiconductor industries using a range of numerical
methods (for example, the finite element method
(FEM)) on mainframe and mini-computers.

Daniel Duffy has BA (Mod), MSc and PhD degrees in
pure and applied mathematics and has been active
in promoting partial differential equation (PDE) and
finite difference methods (FDM) for applications in
computational finance. He was responsible for the
introduction of the Fractional Step (Soviet Splitting)
method and the Alternating Direction Explicit (ADE)
method in computational finance. He is also the
originator of the exponential fitting method for time-
dependent partial differential equations.

He is also the originator of two very popular C++
online courses (both C++98 and C++11/14) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He can
be contacted dduffy@datasim.nl for queries,
information and course venues, in-company course
and course dates

mailto:dduffy@datasim.nl

