
1

MODERN SYSTEM DESIGN AND SOFTWARE DESIGN PATTERNS
(DESA)

Course Contents

A. System Scoping
This is the first stage of the software project and the
main goal is to understand the problem that we are
trying to solve before we start on a design of the
corresponding software system (which we call SUD
or System Under Discussion). In particular, we wish
to understand what the system to be developed
must deliver and to this end we first determine what
the boundaries of the system are. We achieve this
end by identifying the external systems with which
SUD exchanges information and data. Then we
integrate the system requirements and desired
features with the system model.

The products from this stage are:

 A context diagram comprising SUD and its
satellite systems.

 Each system has well-defined responsibilities;
system services have been identified.

 System requirements and features aligned with
the systems in the context diagram.

System Context

 System goals and core process

 Major data flow; linking major output to input

 Discovering external systems

 Initial context diagram

Sample Context diagram

System Requirements and Features
 Viewpoint-oriented requirements determination

 Interviewing techniques and requirements elicitation

 Functional and non-functional requirements

System Responsibilities and Services
 What is a system service?

 Provides and requires services

 Assigning services to systems

 Documenting services

Proof-of-Concept I: Feedback from Domain Experts
 Getting critical early wins and results

 Major data flow

 Initial (numerical) examples

 Reaching consensus with the system architect

 Initial mission design blueprint

Proof-of-Concept II: Prototype
 What do we wish to achieve?

 Viewpoints: architect, designer and project manager

 Creating a prototype

 Review and planning for the next stage

B. Detailed Architectural Design
In this stage we refine and extend the context
diagram to a form that is more closely related to
software architectures. We produce an
unambiguous description of system components,
their interfaces and how they communicate. We
consider several candidate connection architectures
that we can implement using objects, interfaces and
modules during the detailed design stage. We do not
yet commit to a specific programming style or
language and we keep the design flexible by creating
logical interfaces that we can later implement using
a combination of object-oriented, generic and
functional programming styles.

The products from this stage are:
 Specification of the components of a system and the

communication between them.

SUD

S1

For the designer

S3

S2

Problem world

The Machine

2

 Connection architectures: object, interface, plug and
socket.

 Discovering reusable components using Domain
Architectures and Architectural Styles.

 Pay some attention to multitasking programs and
parallel programming systems.

Domain Architectures
 What is a domain architecture?

 Behavioural and structural properties

 The big five categories (MAN, ACS, RAT, PCS, MIS)

 Analogical reasoning and system discovery

ACS

Sink

MIS

Source ResourcesAuthentication

Acces Control System

Architectural Styles
 Design vocabulary and allowed structural patterns

 Computational model; relationship with Domain
Architectures

 Examples (categories) and specialisations

 Basis of Communication (shared state, events)

Multitasking Applications
 Task and data decomposition

 Data dependency graph

 Concurrency versus parallelism

 Coarse-grained and find-grained parallelism

Component Connection Architectures
 System specification

 Provided and required behaviour features

 Conforming components

 Configuring an architecture

C. System Decomposition Patterns
The goal of this stage is to carry out a detailed
decomposition of system components into more
fine-grained modules and objects. We address the
full lifecycle from the object creation process to
defining object structure and the desired level of
behavioural flexibility. We decompose the

components to a stage whereby it is possible to
begin with the detailed design of classes and
modules as well as determining the level of flexibility
that they should satisfy.

The products from this stage are:
 A detailed overview of the most important system and

parallel design patterns.

 Decompose logical components into more fine-grained
objects.

 System assembly using assemblies, static and dynamic
link libraries.

High-impact of Systems Patterns
 (Super) Builder and sub-contractor factories

 Mediator

 Whole Part and Composite

 Layers

 Statecharts and state machines

MySpace

Garden House Shed

Room

Sensor

*

*

Whole-Part pattern

Parallel Design Patterns
 Divide and Conquer

 Geometric Decomposition

 Pipeline

 Event-based coordination

The Actor Model
 What is an actor?

 The message-passing model; message blocks

 Sources and targets

 Starting and stopping an actor-based application

Configuration, Packaging and Lifecycle Specification
 Assemblies, static libraries and dynamic link libraries

 Lifetime management of multi-levelled domain
architectures

 Metadata and reflection patterns

 Maintainability and version control

3

D. Modern Software (GOF) Design Patterns Process
The main goal of this stage in the software project is
to create the detailed design blueprints that are used
as input to programming activities using a
multiparadigm style in languages such as C++, C# and
Java. We commit to a given language and specific
interface implementation. We also pay attention to
reusability issues by determining if we can use
standard libraries instead of creating home-grown
code. Finally, we need to determine the levels of
portability, maintainability and efficiency that the
software modules, classes and components should
satisfy.

The products from this stage are:
 Design blueprints that can be directly implemented in

order to produce a working prototype.

 Plans for the next prototype (allocation of resources).

 Discovering new, evolving and missing requirements.

Modelling Classes
 Inheritance and composition

 Aggregation and association

 What constitutes a good object model?

 Object-oriented software metrics

Structural Design Patterns
 Adapter

 Bridge

 Proxy

 Façade

Behavioural Flexibility
 Command

 Strategy and Template Method

 Next-generation Observer and Delegates

 Visitor

 Role (Facet) pattern

E. Test Cases and Model Problems
In this section we examine a number of ready-to-run
applications from various domains to show how we
applied the design principles and software patterns
that we discussed in this course. The applications
have common features but each one has its own
particular requirements that need to be satisfied.

Environment controller (Process Control)
 Product vending machine (Access Control)

 Customer helpdesk (Resource Allocation and Tracking)

 Extended builders (Manufacturing)

 High-level reporting (Management Information)

 Environment controller (Process Control)

Your Trainer
Daniel J. Duffy started the company Datasim in 1987
to promote C++ as a new object-oriented language
for developing applications in the roles of developer,
architect and requirements analyst to help clients
design and analyse software systems for Computer
Aided Design (CAD), process control and hardware-
software systems, logistics, holography (optical
technology) and computational finance. He used a
combination of top-down functional decomposition
and bottom-up object-oriented programming
techniques to create stable and extendible
applications (for a discussion, see Duffy 2004 where
we have grouped applications into domain
categories). Previous to Datasim he worked on
engineering applications in oil and gas and
semiconductor industries using a range of numerical
methods (for example, the finite element method
(FEM)) on mainframe and mini-computers.

Daniel Duffy has BA (Mod), MSc and PhD degrees in
pure and applied mathematics and has been active
in promoting partial differential equation (PDE) and
finite difference methods (FDM) for applications in
computational finance. He was responsible for the
introduction of the Fractional Step (Soviet Splitting)
method and the Alternating Direction Explicit (ADE)
method in computational finance. He is also the
originator of the exponential fitting method for time-
dependent partial differential equations.

He is the originator of two very popular C++ online
courses (both C++98 and C++11/14) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He can
be contacted dduffy@datasim.nl for queries,
information and course venues, in-company course
and course dates.

References
Duffy, D.J. (2004) Domain Architectures, Wiley
Chichester.

mailto:dduffy@datasim.nl

