
1

Distance Learning Advanced C++ - Programming Models, boost
and Parallel Computing

Module 1: Quick Review of C++ Essentials
General Considerations
 The canonical class definition

 Why const is important

 Raw and smart pointers

 Robust C++ code: guidelines

Advanced Overloading
 Overloading index operators [] and ()

 The assignment operator and memory management

 Overloading the ostream operator <<

 Functors and function objects

 Comparing functors with function pointers

Simple Inheritance
 Inheritance and ISA Relationship

 Specialisation Scenarios

 Inheritance and Object Creation

 Using Base Class Constructors

 Accessibility of Base Members

 Overriding Functions

Polymorphism
 Pointers to the Base Class

 Function Visibility

 Polymorphism

 Defining an Interface

 Abstract Base Classes

 Virtual Destructors

 Operator Overloading and Inheritance

Module 2: Generic Programming and Policy-based
Design
Programming with Templates I
 Multiple parameters

 Nested template class

 Inheritance and composition

 Compile-time and fixed-sized array classes

Programming with Templates II
 Default parameter values

 Template template parameters

 Some templated design patterns

 Template specialization; partial specialisation

Templated Software Components
 Traits classes

 Services and policy-based design

 'Provides' and 'requires' interfaces

 Implementing policies in C++

Advanced GOF: Combining Components into larger
Components
 Creating pattern languages

 Creating networks of inter-related patterns

 Using GOF patterns in larger architectures

 Finding the right patterns

 Contracts and where clauses

Generic Patterns and Generic Programming
 An introduction to generic programming

 Comparing OOP with GP

 Designing components in GP framework

 'Provides' and 'requires' interfaces

The Design of Generic Components
 Traits and their applications

 Policy classes

 Combining policies and traits

 Test Case: a policy-based templated Command and
Proxy patterns

 Examples

Module 3: Standard Template Library (STL)
Overview of Standard Template Library (STL)
 What is STL?

 STL Components

 Containers

 Main Container Types

 Algorithms

 Main Algorithm Categories

 Set-like Operations

 Iterators

 Function Objects

 Adaptors

 Allocators

2

 Strengths and Limitations of STL

 Student Prerequisite Knowledge

STL Containers
 Sequence Containers

 Vector

 Deque

 List

Sorted Associative Containers
 Multisets (Bags)

 Sets

 Set_like Operations on Sorted Structures

 Multimaps

 Maps

Iterators in STL
 What is an Iterator?

 Iterator Categories

 Iterator functions

 Iterator functions: Input Iterators

 Output Iterator Types

 Forward Iterators

 Bi-directional Iterators

 Random Access Iterators

 Qualifying Iterators: Mutable and Constant Iterators

Algorithms in STL
 Overview of STL Algorithms

 Algorithm Categories

 Algorithms with Function Parameters

 Non-mutating Sequence Algorithms

 Mutating Sequence Algorithms

 Sorting and searching

Module 4: Boost Containers, Data Structures and
Higher-Order Programming
MultiArray
 Creating n-dimensional data structures

 Performance issues compared to STL

 Slicing and views

 Resize, reshape and storage

 Multi-index and sub-object searching

Range
 Modelling pairs of iterators

 Using ranges with generic algorithms and STL
containers

 Raising the abstraction level

 Using metafunctions

Tuple
 Modelling n-tuples (pair is a 2-tuple)

 Using tuples as function arguments and return types

 Accessing the elements of a tuple

 Advantages and applications of tuples

Variant
 Creating discriminated unions with heterogeneous

types

 Manipulating several distinct types in a uniform
manner

 Type-safe visitation

 Avoiding type-switching for variant data

Any
 Value-based variant types

 Discriminated types

 Typesafe storage and retrieval Applications of Any

Multi-Index Containers
 Bidirectional maps

 Sets with several iteration orders

 Emulation of standard containers

 MRU lists

 Category: Function Objects and Higher-Order
Programming

Bind
 Generalising and improving the STL Bind

 Uniform syntax for functors, (member) function
pointers

 Functional composition and nested binders

 Bind as used in Boost.Function

Function
 Generalised callback mechanisms

 Storage and invocation of functors, (member)
function pointers

 Useful in notification patterns (Observer, Signals and
Slots)

 Example: separating GUIs from business logic

Signals and Slots
 Implementation of Observer (Publisher-Subscriber)

pattern

 Event management with minimal inter-object
dependencies

 Signals == Subject, Slots == Subscriber

 Application to Mediator and Observer patterns

Lambda
 Unnamed functions

 Useful for STL algorithms

 Avoiding creation of many small function objects

 Less code: write function at location where it is
needed

 Lambda function in C++ 11

3

Module 5: Boost I/O and other Utilities
Filesystem
 Portable manipulation of paths, directories and files

 Defining functionality as in scripting languages

 Platform portability

Serialisation
 Saving arbitrary data to an archive (e.g. XML)

 Restoring data from an archive

 Versioning

Regex
 Regular expressions and pattern matching

 Processing large and inexact strings

 Emulating functionality as in Perl, awk, sed

Spirit
 Functional, recursive descent parser generator

framework

 Command-line parsers

 Specifying grammar rules in C++ (EBNF syntax)

 Performance issues

Tokenizer
 Separate character sequences into tokens

 Finding data in delimited text streams

 User-defined delimiters

Time Series and Forecasting
 Linear and multiple regression

 Smoothing

 Exponential smoothing

 Multiplicative model

Boost Accumulator Library
 Overview and application areas

 The Statistical Accumulators Library

 Examples and test cases

Module 6: Boost Interprocess and Network
Communication
Asynchronous Communication
 Network and low-level I/O

 Proactor design patterns

 Strands

 Custom memory allocation

Networking
 TCP, UDP, ICMP

 Socket I/O streams

 SSL support

 Serial ports

Interprocess
 Shared memory

 Memory-mapped files

 Semaphores and mutexes

 File locking

 Message queues

UML Statecharts in Boost
 Hierarchical (composite, nested) states

 Orthogonal states

 Transitions and Guards

 Event delay

Module 7: Multi-threaded and Parallel
Programming Boost Thread
Memory Systems
 Shared memory parallel computers (SMPs)

 Shared and cache memory

 Shared memory consistency models

 Distributed memory and shared distributed memory

Threads
 What is a thread?

 Thread attributes

 Thread execution lifecycle

 User threads and kernel threads

Data Access in Threads
 Fork-join (master/slave) model

 Shared and private data

 Thread synchronisation

Synchronisation in Detail
 Mutual exclusion (mutex) and condition variables

 Critical sections

 Memory synchronisation and fences

 Barriers

Troubleshooting
 Sequential consistency

 Removing data dependencies

 Race conditions

 Deadlock and livelock

Boost Threads
 Free thread functors

 Thread classes

 Non-member functions

 Status of Boost Thread

Synchronisation
 Mutex concepts

4

 Lock mechanism and lock types

 Condition variables

 Barriers

 Futures

Other Topics
 Thread local storage

 Emulations

 Conformance and Extension

Module 8: OpenMP, an Introduction
Overview
 Compiler directives

 Library routines

 Environment variables

My First OpenMP Program
 Writing the serial program

 Determining parallel code

 Adding OpenMP directives

 Debugging and performance measurement

Data Clauses in OpenMP
 Shared and private

 Lastprivate, firstprivate

 Default and nowait clause

OpenMP Synchronisation Constructs
 Barrier

 Ordered

 Critical and Atomic

 Locks, Master construct

Work Sharing in OpenMP
 Loop construct

 Sections and section

 Single construct

 Combined parallel work-sharing constructs

 Other Clauses

 Reduction clause

 Copyin clause

 Copyprivate clause

 Ordered clause

Configuration and Run-Time Information
 Setting environment variables' values

 Library functions for thread information

 Scheduling functions

 Lock functions

 Timing functions

Module 9: Applications: Design and Implementation
Structural Modelling, I
 Overview of Unified Modelling Language (UML)

 Class diagrams

 Component diagrams

 Sequence diagrams

Structural Modelling, II
 Semantic modelling

 Generalisation/Specialisation (Inheritance)

 Aggregation and Composition

 Association and association class

Whole-Part Pattern
 Modelling complex structured objects

 Whole-Part types

 Checklist: which type to use

 The steps in implementing Whole-Part object

 Applications for Whole-Part

Detailed Software Requirements for Components
 Throwaway, non-throwaway and production software

 What are the top software requirements?

 Functional and non-Functional requirements (FRs and
NFRs)

 How FRs and NFRs affect component design

Combining Component and Object Technologies
 Comparing Component and Object Design

 The differences between OOD and COD

 Combining components and objects

 Assemblies and namespaces

 Developing components from objects

 Component loading and the object instantiation
process

Using Components and Objects for GOF Patterns
 When to use interfaces and when to use abstract

classes

 Using classes and objects in combination with
components

 Stateless and Stateful GOF patterns

 Delegation and Composition

Designing C++ Applications
 Choice of programming models

 Complexity Analysis and data structures

 Which STL and boost libraries to use

 Design patterns

Performance of C++ I
 Classifying and discovering performance bottlenecks

 Virtual versus non-virtual functions

 Preventing unnecessary object creation

 Exceptional handling

Performance of C++ II
 Templates versus inheritance

 Using the appropriate data structures from STL

5

 Loop optimizing techniques

 Loop fission, fusion, unrolling and tiling

C++ 11 Update (contents similar to Wiki entry C++
11)
 Core language usability enhancements

 Core language functionality improvements

 C++ standard library changes

Module 10: Linear and Nonlinear Data Structures
Overview
 Abstract data types and algorithms

 Taxonomy of data structures

 Mathematical tools for algorithm analysis

 Linear and nonlinear data types

 Design strategies

Review of Fundamental Data Structures
 Vectors, matrices and arrays

 Sets, stack and queues

 Linked lists

Complexity Analysis
 Computational and asymptotic complexity

 Big-O notations

 Other measures of complexity

 Potential problems

 NP-completeness

Recursion
 Basic concepts

 Function calls and recursive implementation

 Tail, nontail and nested recursion

 Backtracking

Binary Trees
 Mathematical properties

 Complete and full binary trees

 Computed the depth of a binary tree

 2-trees

Introduction to Graph Theory
 Directed and Undirected Graphs

 Properties of Graphs and graph

 Paths and Connectivity

 Special Types of Graphs

Graph Structure and Algorithms
 Graph data structures and operations on graphs

 Minimum spanning tree (MST) problems

 Depth-first and Breadth-first searches in graphs

 Shortest path problems

 Connected components

Boost Functional Hash

 Hash function and hash table

 Categories of hash function

 Creating custom hash

 Applications

Boost Heap
 Heap ADT

 Variants (Fibonacci, skew, priority queue, etc.)

 Heap and computational efficiency

 Boost Heap versus STL heap

Boost Unordered
 Hashed associative containers

 Complexity analysis

 Applications

 Integration with STL and other Boost libraries

 Custom Types

 Controlling the number of buckets

Boost Bimap
 What is a bidirectional map?

 The three views of a bimap

 Integration with STL

 Implementing UML association class

