
1

Distance Learning Advanced C++ - Programming Models, boost
and Parallel Computing

Module 1: Quick Review of C++ Essentials
General Considerations
 The canonical class definition

 Why const is important

 Raw and smart pointers

 Robust C++ code: guidelines

Advanced Overloading
 Overloading index operators [] and ()

 The assignment operator and memory management

 Overloading the ostream operator <<

 Functors and function objects

 Comparing functors with function pointers

Simple Inheritance
 Inheritance and ISA Relationship

 Specialisation Scenarios

 Inheritance and Object Creation

 Using Base Class Constructors

 Accessibility of Base Members

 Overriding Functions

Polymorphism
 Pointers to the Base Class

 Function Visibility

 Polymorphism

 Defining an Interface

 Abstract Base Classes

 Virtual Destructors

 Operator Overloading and Inheritance

Module 2: Generic Programming and Policy-based
Design
Programming with Templates I
 Multiple parameters

 Nested template class

 Inheritance and composition

 Compile-time and fixed-sized array classes

Programming with Templates II
 Default parameter values

 Template template parameters

 Some templated design patterns

 Template specialization; partial specialisation

Templated Software Components
 Traits classes

 Services and policy-based design

 'Provides' and 'requires' interfaces

 Implementing policies in C++

Advanced GOF: Combining Components into larger
Components
 Creating pattern languages

 Creating networks of inter-related patterns

 Using GOF patterns in larger architectures

 Finding the right patterns

 Contracts and where clauses

Generic Patterns and Generic Programming
 An introduction to generic programming

 Comparing OOP with GP

 Designing components in GP framework

 'Provides' and 'requires' interfaces

The Design of Generic Components
 Traits and their applications

 Policy classes

 Combining policies and traits

 Test Case: a policy-based templated Command and
Proxy patterns

 Examples

Module 3: Standard Template Library (STL)
Overview of Standard Template Library (STL)
 What is STL?

 STL Components

 Containers

 Main Container Types

 Algorithms

 Main Algorithm Categories

 Set-like Operations

 Iterators

 Function Objects

 Adaptors

 Allocators

2

 Strengths and Limitations of STL

 Student Prerequisite Knowledge

STL Containers
 Sequence Containers

 Vector

 Deque

 List

Sorted Associative Containers
 Multisets (Bags)

 Sets

 Set_like Operations on Sorted Structures

 Multimaps

 Maps

Iterators in STL
 What is an Iterator?

 Iterator Categories

 Iterator functions

 Iterator functions: Input Iterators

 Output Iterator Types

 Forward Iterators

 Bi-directional Iterators

 Random Access Iterators

 Qualifying Iterators: Mutable and Constant Iterators

Algorithms in STL
 Overview of STL Algorithms

 Algorithm Categories

 Algorithms with Function Parameters

 Non-mutating Sequence Algorithms

 Mutating Sequence Algorithms

 Sorting and searching

Module 4: Boost Containers, Data Structures and
Higher-Order Programming
MultiArray
 Creating n-dimensional data structures

 Performance issues compared to STL

 Slicing and views

 Resize, reshape and storage

 Multi-index and sub-object searching

Range
 Modelling pairs of iterators

 Using ranges with generic algorithms and STL
containers

 Raising the abstraction level

 Using metafunctions

Tuple
 Modelling n-tuples (pair is a 2-tuple)

 Using tuples as function arguments and return types

 Accessing the elements of a tuple

 Advantages and applications of tuples

Variant
 Creating discriminated unions with heterogeneous

types

 Manipulating several distinct types in a uniform
manner

 Type-safe visitation

 Avoiding type-switching for variant data

Any
 Value-based variant types

 Discriminated types

 Typesafe storage and retrieval Applications of Any

Multi-Index Containers
 Bidirectional maps

 Sets with several iteration orders

 Emulation of standard containers

 MRU lists

 Category: Function Objects and Higher-Order
Programming

Bind
 Generalising and improving the STL Bind

 Uniform syntax for functors, (member) function
pointers

 Functional composition and nested binders

 Bind as used in Boost.Function

Function
 Generalised callback mechanisms

 Storage and invocation of functors, (member)
function pointers

 Useful in notification patterns (Observer, Signals and
Slots)

 Example: separating GUIs from business logic

Signals and Slots
 Implementation of Observer (Publisher-Subscriber)

pattern

 Event management with minimal inter-object
dependencies

 Signals == Subject, Slots == Subscriber

 Application to Mediator and Observer patterns

Lambda
 Unnamed functions

 Useful for STL algorithms

 Avoiding creation of many small function objects

 Less code: write function at location where it is
needed

 Lambda function in C++ 11

3

Module 5: Boost I/O and other Utilities
Filesystem
 Portable manipulation of paths, directories and files

 Defining functionality as in scripting languages

 Platform portability

Serialisation
 Saving arbitrary data to an archive (e.g. XML)

 Restoring data from an archive

 Versioning

Regex
 Regular expressions and pattern matching

 Processing large and inexact strings

 Emulating functionality as in Perl, awk, sed

Spirit
 Functional, recursive descent parser generator

framework

 Command-line parsers

 Specifying grammar rules in C++ (EBNF syntax)

 Performance issues

Tokenizer
 Separate character sequences into tokens

 Finding data in delimited text streams

 User-defined delimiters

Time Series and Forecasting
 Linear and multiple regression

 Smoothing

 Exponential smoothing

 Multiplicative model

Boost Accumulator Library
 Overview and application areas

 The Statistical Accumulators Library

 Examples and test cases

Module 6: Boost Interprocess and Network
Communication
Asynchronous Communication
 Network and low-level I/O

 Proactor design patterns

 Strands

 Custom memory allocation

Networking
 TCP, UDP, ICMP

 Socket I/O streams

 SSL support

 Serial ports

Interprocess
 Shared memory

 Memory-mapped files

 Semaphores and mutexes

 File locking

 Message queues

UML Statecharts in Boost
 Hierarchical (composite, nested) states

 Orthogonal states

 Transitions and Guards

 Event delay

Module 7: Multi-threaded and Parallel
Programming Boost Thread
Memory Systems
 Shared memory parallel computers (SMPs)

 Shared and cache memory

 Shared memory consistency models

 Distributed memory and shared distributed memory

Threads
 What is a thread?

 Thread attributes

 Thread execution lifecycle

 User threads and kernel threads

Data Access in Threads
 Fork-join (master/slave) model

 Shared and private data

 Thread synchronisation

Synchronisation in Detail
 Mutual exclusion (mutex) and condition variables

 Critical sections

 Memory synchronisation and fences

 Barriers

Troubleshooting
 Sequential consistency

 Removing data dependencies

 Race conditions

 Deadlock and livelock

Boost Threads
 Free thread functors

 Thread classes

 Non-member functions

 Status of Boost Thread

Synchronisation
 Mutex concepts

4

 Lock mechanism and lock types

 Condition variables

 Barriers

 Futures

Other Topics
 Thread local storage

 Emulations

 Conformance and Extension

Module 8: OpenMP, an Introduction
Overview
 Compiler directives

 Library routines

 Environment variables

My First OpenMP Program
 Writing the serial program

 Determining parallel code

 Adding OpenMP directives

 Debugging and performance measurement

Data Clauses in OpenMP
 Shared and private

 Lastprivate, firstprivate

 Default and nowait clause

OpenMP Synchronisation Constructs
 Barrier

 Ordered

 Critical and Atomic

 Locks, Master construct

Work Sharing in OpenMP
 Loop construct

 Sections and section

 Single construct

 Combined parallel work-sharing constructs

 Other Clauses

 Reduction clause

 Copyin clause

 Copyprivate clause

 Ordered clause

Configuration and Run-Time Information
 Setting environment variables' values

 Library functions for thread information

 Scheduling functions

 Lock functions

 Timing functions

Module 9: Applications: Design and Implementation
Structural Modelling, I
 Overview of Unified Modelling Language (UML)

 Class diagrams

 Component diagrams

 Sequence diagrams

Structural Modelling, II
 Semantic modelling

 Generalisation/Specialisation (Inheritance)

 Aggregation and Composition

 Association and association class

Whole-Part Pattern
 Modelling complex structured objects

 Whole-Part types

 Checklist: which type to use

 The steps in implementing Whole-Part object

 Applications for Whole-Part

Detailed Software Requirements for Components
 Throwaway, non-throwaway and production software

 What are the top software requirements?

 Functional and non-Functional requirements (FRs and
NFRs)

 How FRs and NFRs affect component design

Combining Component and Object Technologies
 Comparing Component and Object Design

 The differences between OOD and COD

 Combining components and objects

 Assemblies and namespaces

 Developing components from objects

 Component loading and the object instantiation
process

Using Components and Objects for GOF Patterns
 When to use interfaces and when to use abstract

classes

 Using classes and objects in combination with
components

 Stateless and Stateful GOF patterns

 Delegation and Composition

Designing C++ Applications
 Choice of programming models

 Complexity Analysis and data structures

 Which STL and boost libraries to use

 Design patterns

Performance of C++ I
 Classifying and discovering performance bottlenecks

 Virtual versus non-virtual functions

 Preventing unnecessary object creation

 Exceptional handling

Performance of C++ II
 Templates versus inheritance

 Using the appropriate data structures from STL

5

 Loop optimizing techniques

 Loop fission, fusion, unrolling and tiling

C++ 11 Update (contents similar to Wiki entry C++
11)
 Core language usability enhancements

 Core language functionality improvements

 C++ standard library changes

Module 10: Linear and Nonlinear Data Structures
Overview
 Abstract data types and algorithms

 Taxonomy of data structures

 Mathematical tools for algorithm analysis

 Linear and nonlinear data types

 Design strategies

Review of Fundamental Data Structures
 Vectors, matrices and arrays

 Sets, stack and queues

 Linked lists

Complexity Analysis
 Computational and asymptotic complexity

 Big-O notations

 Other measures of complexity

 Potential problems

 NP-completeness

Recursion
 Basic concepts

 Function calls and recursive implementation

 Tail, nontail and nested recursion

 Backtracking

Binary Trees
 Mathematical properties

 Complete and full binary trees

 Computed the depth of a binary tree

 2-trees

Introduction to Graph Theory
 Directed and Undirected Graphs

 Properties of Graphs and graph

 Paths and Connectivity

 Special Types of Graphs

Graph Structure and Algorithms
 Graph data structures and operations on graphs

 Minimum spanning tree (MST) problems

 Depth-first and Breadth-first searches in graphs

 Shortest path problems

 Connected components

Boost Functional Hash

 Hash function and hash table

 Categories of hash function

 Creating custom hash

 Applications

Boost Heap
 Heap ADT

 Variants (Fibonacci, skew, priority queue, etc.)

 Heap and computational efficiency

 Boost Heap versus STL heap

Boost Unordered
 Hashed associative containers

 Complexity analysis

 Applications

 Integration with STL and other Boost libraries

 Custom Types

 Controlling the number of buckets

Boost Bimap
 What is a bidirectional map?

 The three views of a bimap

 Integration with STL

 Implementing UML association class

