
1 
 

Advanced C# Programming in .NET  
 

 
 
Assemblies 
 What are assemblies? 

 Modules 

 Assemblies versus regular .DLLs 

 Assemblies for reuse, versioning, deployment and 
security 

 Assembly contents: Metadata, Resources, code and 
manifest 

 Private and shared assemblies 

 Creating and using assembly DLLs 

 Assemblies and namespaces 

 
Shared Assemblies and Versioning 
 Shared assemblies 

 Global Assembly Cache (GAC) 

 Side by side versions and cultures 

 Strong names 

 Public and private key encryption 

 Signing assemblies 

 Installing assemblies in the GAC 

 Delay signing 

 Versioning 

 Other assembly attributes 

 
Disposal and Garbage Collection(GC) 
 IDisposable, Dispose and Close 

 Finalisers 

 Automatic garbage collection 

 GC internals 

 Memory leaks 

 
Design by Contract 
 Background (Eiffel Programming language) 

 Supplier and client: rights and responsibilities 

 What is reliable and correct software? 

 Correctness and Hoare triples 

 Preconditions, postconditions and assertions 

 Imperative and declarative statements 

 
Code Contracts in .NET 
 Overview of Code Contract 

 The binary rewriter 

 The Contract class 

 Implementing contract by design 

 Contracts on interfaces and abstract classes 

 Dealing with contract failure 

 
Delegates and Events 
 Loose coupling using interfaces: Strategy pattern 

 Delegates: safe function pointers 

 
 

 Loose coupling using delegates: Strategy pattern 

 Multicast delegates 

 Events 

 Publisher-Subscriber idiom 

 Model-View / Observer pattern 

 Defining and raising events 

 Create event handlers and subscribers 

 Anonymous methods versus Lambda functions 

 Custom event storage 

 
Reflection 
 What is reflection? 

 Metadata, data about data 

 Reflection API: Assembly, Module, Type and 
MemberInfo classes 

 Dynamic object creation 

 Dynamic method invocation 

 Dynamic assembly loading 

 Dynamic programming 

 Code emission 

 Applications of reflection 

 
Attributes 
 What are attributes? 

 Some intrinsic (build-in) attributes 

 Creating custom attributes 

 Reading attributes 

 
Generics 
 Traditional .NET object data structures 

 Concrete type wrapper classes 

 Generic .NET datastructures 

 Collection initializers 

 Creating generic classes 

 Templates versus generics 

 Default values 

 Multiple generic types 

 Generic type alias & var variables 

 Generic derivation- and constructor constraints 

 Generic methods 

 Generic delegates and events 

 
Advanced Generics 
 Generics and reflection 

 Generics and serialization 

 Integrating Object Oriented Programming & 
Generic Programming 

 Covariance & contravariance 

 Strategy pattern with generics 



2 
 

Multi-Paradigm Programming in C# 
 Object-oriented (OOP), generic (GP) and functional 

(FP) models 

 Criteria for choosing a given model 

 Delegates versus interfaces versus virtual/abstract 
methods 

 Designing component-based systems in .NET 

 
Processes and Threads 
 Starting external processes 

 Redirecting standard IO  

 Thread class and ThreadStart and 
ParameterizedThreadStart delegates 

 Thread life cycle 

 Controlling thread execution 

 Joining threads 

 Thread synchronisation 

 Synchronising collections 

 Thread notification: Wait, Pulse, PulseAll   

 Producer-Consumer pattern 

 
An Introduction to Task Parallel Library (TPL) 
 Tasks and futures 

 The Parallel class 

 Parallel Invoke, For and Foreach Task Manager 

 
Networking 
 URIs, URLs, IP addresses and DNS 

 Simple networking with WebRequest & 
WebResponse 

 Sockets 

 User Datagram Protocol (UDP) 

 Sending and receiving datagrams 

 Transmission Control Protocol (TCP) 

 NetworkStream 

 Servers (TcpListener) and clients (TcpClient) 

 
Dynamic Programming 
 Dynamic Language Runtime (DLR) 

 Dynamic member overload resolution 

 Simplifying the Visitor pattern; multiple dispatch 

 Dynamic objects 

 Interoperability with dynamic languages 

 Dynamic programming versus Reflection 

 Large System Design in C# 

 
System decomposition and application domains 
 Single domain, multidomain and distributed 

applications 

 Using multiple application domains 

 Domains and threads 

 Sharing data between domains 

 
Advanced C# Language Features 
 Object and Collection Initialisers 

 Auto-Implemented Properties 

 Implicit Typed Variables 

 Anonymous Types 

 Lambda Expressions 

 Extension Methods 

 Tuples 

 
Introduction to LINQ 
 LINQ query expressions 

 Query operators 

 Ordering, Subsets, Single element, Aggregation, 
Quantifying and Set Operators 

 Sub queries 

 Grouping and Joining 

 
Interoperability with Legacy Code 
 Using legacy DLLs 

 DLL Callback functions 

 Runtime Callable Wrapper 

 Primary Interop Assemblies 

 Using .NET components in non .NET software 

 COM Callable Wrapper 

 Registering .NET components for COM 

 Early and late binding 

 
Mixing C# with C++ using C++/CLI 
 What is C++/CLI 

 C# application using native C++ 

 Exposing C++ class to .NET using C++/CLI wrapper 

 Native C++ application using C# 

 Using a C# GUI in C++ 

 Interfacing to Boost C++ Libraries 

 


