
1

Software Design Fundamentals (code SDF)

C# and the .NET framework
• The .NET Framework

• Common Language Runtime (CLR)

• What is MSIL

• .NET Framework Class Library (FCL)

• Where does C# fit in

• C# as an object-oriented language

• Assemblies

• Language interop

C# Language
• The start of the application

• Variables and types

• Value types and reference types

• Copying and comparing reference types

• Strings and arrays

• Operators and their precedence

• The Console class

• String formatting

• Statements and flows

• Command-line arguments

Classes & Objects
• Abstract Data Types

• Objects and classes

• Creating and using your own classes

• Data members and member methods

• Accessibility levels

• Constructors

• Method overloading

• This keyword

More on classes
• Properties

• Static variables, methods & classes

• Extention Methods

• Object destruction & finalizers

• ref and out parameters

• Variable length argument lists

• Named and optional arguments

• Constant values

• Enumerations

• Nullable types & coalescing operator

• var variables

Inheritance and Polymorphism
• The root of all classes

• Creating derived classes

• Method overriding and hiding

• Polymorphism and virtual functions

• Casting objects

• Abstract classes

• Sealed classes & methods

• More access specifiers

Namespaces, Nested Classes and Conversions
• Why using namespaces

• Using classes in a namespace

• Placing classes in a namespace

• Nested namespaces

• Aliases

• Using assemblies

• Nested classes

• Partial classes

• Implicit conversions and member lookup

• Explicit conversions

• Checked conversions

Interfaces
• What is an interface?

• Creating, implementing and using interfaces

• Interfaces and properties

• The is and as operators

• Interfaces versus abstract classes

• Cloning objects using the ICloneable interface

• Comparing objects using the Equals method

• IDisposable interface and using statement

• Explicit interface implementation

• Implementing ICloneable as explicit interface

Structs
• User defined value types

• Structs versus classes

• Boxing and unboxing

• Object Initializers

Operator Overloading
• What is operator overloading?

• Overloading binary operators

• Comparing objects using overloaded == and !=
operators

• Overloading unary operators

• Prefix and postfix operators

• true and false operators

• User defined conversions

• Indexers

• Guidelines

2

Exception Handling
• What are exceptions

• Exceptions in C#

• Build-in exception classes and their members

• Catching exceptions: try ... catch

• finally

• Nesting try blocks

• Throwing exceptions

• Creating your own exception classes

• Chaining exceptions

Delegates and Events
• Loose coupling using interfaces: Strategy pattern

• Delegates: safe function pointers

• Loose coupling using delegates: Strategy pattern

• Multicast delegates

• Events

• Publisher-subscribe idiom

• Model-view / observer pattern

• Defining and raising events

• Create event handlers and subscribe

• Anonymous methods

Introduction to the .NET Framework Class Library
• Framework namespaces

• Basic framework functionality and interfaces

• Array sorting and searching

• Mathematics

• Collections: ArrayList and Hashtable

• Enumerators and foreach

Introduction to Windows Forms
• Windows forms library

• Forms and controls

• Creating simple GUI by hand

• Event handling

• Common Dialog Boxes

• GDI+

Introduction to Windows Presentation
Foundation
• What is WPF

• XAML

• Code behind files

• Controls

• Graphics

Introduction to Generic Programming
• Traditional .NET object data structures

• Concrete type wrapper classes

• Generic .NET datastructures

• Collection initializers

• Creating generic classes

• Templates versus generics

• Default values

• Multiple generic types

• Generic type alias & var variables

• Generic derivation- and constructor constraints

• Generic methods

• Generic delegates and events

• Strategy pattern with generics

Deployment
• Deploying your application to the end user

• CAB setup

• Microsoft Installer (MSI) setup

• Merge modules

• Web setup

Your Trainer
Daniel J. Duffy started the company Datasim in
1987 to promote C++ as a new object-oriented
language for developing applications in the roles of
developer, architect and requirements analyst to
help clients design and analyse software systems
for Computer Aided Design (CAD), process control
and hardware-software systems, logistics,
holography (optical technology) and computational
finance. He used a combination of top-down
functional decomposition and bottom-up object-
oriented programming techniques to create stable
and extendible applications (for a discussion, see
Duffy 2004 where we have grouped applications
into domain categories). Previous to Datasim he
worked on engineering applications in oil and gas
and semiconductor industries using a range of
numerical methods (for example, the finite element
method (FEM)) on mainframe and mini-computers.
Daniel Duffy has BA (Mod), MSc and PhD degrees in
pure and applied mathematics and has been active
in promoting partial differential equation (PDE) and
finite difference methods (FDM) for applications in
computational finance. He was responsible for the
introduction of the Fractional Step (Soviet Splitting)
method and the Alternating Direction Explicit (ADE)
method in computational finance. He is also the
originator of the exponential fitting method for
time-dependent partial differential equations.
He is also the originator of two very popular C++
online courses (both C++98 and C++11/14) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He can
be contacted dduffy@datasim.nl for queries,
information and course venues, in-company course
and course dates

mailto:dduffy@datasim.nl

