
1

Advanced C++ and C++ 11: The new Standard (Financial)
(code CPPA)

Part I: C++ 11 as a ‘better’ C++
New Language Features I
• Keywords

• auto
• decltype
• noexcept
• constexpr
• nullptr

New Language Features II
• Uniform initialization and initializer lists

• Default template parameters
• Function declaration syntax
• New fundamental data types

Move Semantics
• What is move?

• Copying versus moving: performance

• Rvalue references

• Move constructor and move assignment

Using Move
• Arrays and Containers

• File streams
• User-defined copyable and movable classes
• Composition and inheritance
• Perfect forwarding

Exception Handling
• Exception class hierarchy

• Logic and run-time errors

• Exceptions thrown by the Standard Library

• Error codes compared to error conditions

Smart Pointers and Memory Management
• Design rationale

• Class shared_ptr

• Destruction policies

• Class weak_ptr

• Class unique_ptr

• Performance and reliability

Part II: Modelling Functions and STL
Background
• Traditional Approach

• Function pointers
• Function overloading and virtual functions

• The categories of polymorphic behaviour

• Using (and misusing) inheritance to realise subtype
polymorphism

Fundamentals of Functional Programming (FP)
• Short history of FP

• Higher-order functions
• Recursion; passing a function to itself
• Strict and non-strict (delayed) evaluation
• Pure functions and lambda functions

Functional Programming
• Functions and Data

• Function composition

• Closures

• Currying and uncurrying

• Fold and continuations

Functional Programming in C++
• Overview

• C++ as a multi-paradigm programming language
• Universal function type
• (polymorphic) wrappers (std::function)
• Binders and predefined function objects (std::bind)
• Lambda functions versus binders
• A uniform function framework

Lambda Functions
• What is a lambda functions

• The closure of a lambda function: closure

• Using lambda functions with auto

• The mutable keyword

Using Lambda Functions
• Configuring applications

• With algorithms

• As sorting criteria

• As hash function

• Lambda functions versus function objects

 A Taxonomy of Functions in C++
• Function pointers and free functions

• Object and static member functions

• Function objects

• Lambda functions

2

• Events and signals (Boost signals2 library)

Part III: Data Structures and STL Review of STL
• Containers

• Sequence containers
• Associative containers
• Unordered containers
• Container adapters
• User-defined containers

Hashing
• Hash function and hash table

• Categories of hash function
• Creating custom hash
• Applications

Boost Heap
• Heap ADT

• Variants (Fibonacci, skew, priority queue, etc.)

• Heap and computational efficiency

• Boost Heap versus STL heap

Unordered Containers
• Differences with (ordered) associative containers

• Abilities of unordered containers
• Complexity analysis
• Integration with STL and other Boost libraries
• The Bucket interface

Tuples
• Modelling n-tuples (pair is a 2-tuple)

• Using tuples as function arguments and return types
• Accessing the elements of a tuple
• Advantages and applications of tuples

Fixed-sized Arrays std:array<>
• Why do we need std:array<> ?

• Operations and abilities

• Using arrays as C-Style arrays

• Combining arrays and tuples

Part IV: Other Libraries
Clocks and Timers
• Overview of Chrono library

• Duration and timepoint
• Clocks
• Date and time functions

Regular Expressions (Regex)
• Regex

• Match and Search Interface
• Subexpressions
• Regex iterators and token iterators
• Replacing regular expressions
• Flags and expressions

Random Numbers and Statistical Distributions
• What are random and pseudo-random numbers?

• Engines and distributions in C++

• Basic engines, engine adapters; adapters with
predefined parameters

• Categories of distributions

• Examples and applications

Concurrency Fundamentals
• Threads in C++; properties

• Promises and return arguments

• Threads in detail

• Mutexes and locks

Advanced Concurrency
• Synchronisation and condition variables

• Futures and async()
• Launch policies
• Waiting and polling
• Example: Producer-Consumer pattern

Part V: C++ 11 Application Design

Advanced Templates
• Partial specialization

• Dynamic versus static polymorphism
• Generic programming
• Variadic templates
• Alias templates (template typedef)
• Generic lambda functions

Using C++ 11 in Applications: Epilogue
• Design patterns revisited and reengineered

• Multi-paradigm design in C++
• Software layering
• Software components
• Software assembly process

C++ 14 …
• Minor bug fixes and enhancements

• Generic lambdas and lambda captures expressions
• Function return type deduction for all kinds of function
• Aggregate member initialization
• New standard library features

Your Trainer
Daniel J. Duffy started the company Datasim in
1987 to promote C++ as a new object-oriented
language for developing applications in the roles of
developer, architect and requirements analyst to
help clients design and analyse software systems
for Computer Aided Design (CAD), process control
and hardware-software systems, logistics,
holography (optical technology) and computational
finance. He used a combination of top-down
functional decomposition and bottom-up object-
oriented programming techniques to create stable
and extendible applications (for a discussion, see
Duffy 2004 where we have grouped applications
into domain categories). Previous to Datasim he
worked on engineering applications in oil and gas
and semiconductor industries using a range of

3

numerical methods (for example, the finite element
method (FEM)) on mainframe and mini-computers.
Daniel Duffy has BA (Mod), MSc and PhD degrees in
pure and applied mathematics and has been active
in promoting partial differential equation (PDE) and
finite difference methods (FDM) for applications in
computational finance. He was responsible for the
introduction of the Fractional Step (Soviet Splitting)
method and the Alternating Direction Explicit (ADE)
method in computational finance. He is also the
originator of the exponential fitting method for
time-dependent partial differential equations.
He is also the originator of two very popular C++
online courses (both C++98 and C++11/14) on
www.quantnet.com in cooperation with Quantnet
LLC and Baruch College (CUNY), NYC. He also trains
developers and designers around the world. He can
be contacted dduffy@datasim.nl for queries,
information and course venues, in-company course
and course dates

mailto:dduffy@datasim.nl

