
1

Quiz 3 Smart Pointers

© Datasim Education BV 2018

1. What can be said about std::auto_ptr<> (true/false)?

a) It is supported in C++11 and deprecated in C++14.

b) It supports move semantics.

c) It only supports the creation of single objects.

d) Loss of ownership is an issue.

2. What are the main features of smart pointers in C++ in general?

a) They employ garbage collection to manage memory allocation and deallocation.

b) They support both exclusive and shared ownership of objects and memory.

c) They know whether they are the last owner of a resource.

d) Objects are cleaned up as soon as they are no longer needed.

3. What is a dangling pointer?

a) A pointer that has been deleted.

b) A pointer that points to memory that no longer holds the object that the pointer is supposed

to point to.

c) When a null pointer is deleted.

d) It occurs when a std::auto_ptr is copied.

4. Which entities are in a shared pointer’s control block?

a) Custom deleter.

b) Scoped count.

c) Reference count.

d) Weak count.

5. Which of the following statement s are true?

a) A weak point has a reference count.

b) A weak point is used to break circular references in shared pointers.

c) Smart pointers are thread-safe.

d) C++11 unique pointers are similar to Boost scoped pointers.

6. Consider the following code:

// Simple code to show use count

 std::cout << "\nSome stuff with smart pointers\n";

 using SP = std::shared_ptr<double>;

 using WP = std::weak_ptr<double>;

 SP a(new double);

 *a = 3.1415;

 std::cout << "Use count: " << a.use_count() << '\n'; // A

 SP a2(a);

 std::cout << "Use count: " << a2.use_count() << '\n'; // B

2

 WP w(a2);

 std::cout << "Use count: " << w.use_count() << '\n'; // C

 std::cout << "Expired: "<<std::boolalpha<<w.expired(); // D

 w.reset();

 std::cout << "Use count: " << w.use_count() << '\n'; // E

 a2.reset();

 std::cout << "Use count: " << a2.use_count() << '\n'; // F

 std::cout << "Use count: " << a.use_count() << '\n'; // G

What is the output from A to G?

a) {1,2,2,true,0,0,1}.

b) {1,2,2,false,0,0,1}.

c) {1,2,2,false,0,0,0}.

d) {1,2,2,true,0,0,0}.

